lstsq_op.h 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>
#include <algorithm>
#include <complex>
#include "paddle/fluid/operators/eig_op.h"
#include "paddle/fluid/operators/math/eigen_values_vectors.h"
#include "paddle/fluid/operators/math/matrix_solve.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/operators/triangular_solve_op.h"
#include "paddle/fluid/platform/for_range.h"
27
#include "paddle/pten/kernels/funcs/complex_functors.h"
28
#include "paddle/pten/kernels/funcs/lapack/lapack_function.h"
29
#include "paddle/pten/kernels/funcs/math_function.h"
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

#define EPSILON 1e-6

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
enum class LapackDriverType : int { Gels, Gelsd, Gelsy, Gelss };

using DDim = framework::DDim;
static DDim UDDim(const DDim& x_dim) {
  auto x_vec = vectorize(x_dim);
  return framework::make_ddim(x_vec);
}

template <typename DeviceContext, typename T>
class LstsqCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
49
    using ValueType = pten::funcs::Real<T>;
50 51

    const Tensor& x = *context.Input<Tensor>("X");
52
    auto y = context.Input<Tensor>("Y");
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    auto rcond = context.Attr<float>("rcond");
    auto driver_string = context.Attr<std::string>("driver");

    static auto driver_type = std::unordered_map<std::string, LapackDriverType>(
        {{"gels", LapackDriverType::Gels},
         {"gelsy", LapackDriverType::Gelsy},
         {"gelsd", LapackDriverType::Gelsd},
         {"gelss", LapackDriverType::Gelss}});
    auto driver = driver_type[driver_string];

    auto solution = context.Output<Tensor>("Solution");
    auto* rank = context.Output<Tensor>("Rank");
    auto* singular_values = context.Output<Tensor>("SingularValues");

    auto dito =
        math::DeviceIndependenceTensorOperations<DeviceContext, T>(context);

    auto x_dims = x.dims();
71
    auto y_dims = y->dims();
72 73
    int dim_size = x_dims.size();
    int x_stride = MatrixStride(x);
74
    int y_stride = MatrixStride(*y);
75
    int batch_count = BatchCount(x);
76
    auto solution_dim = solution->dims();
77
    int ori_solu_stride = MatrixStride(*solution);
78 79
    int max_solu_stride = std::max(y_stride, ori_solu_stride);
    int min_solu_stride = std::min(y_stride, ori_solu_stride);
80 81 82 83 84 85 86 87 88 89 90 91 92

    // lapack is a column-major storge, transpose make the input to
    // have a continuous memory layout
    int info = 0;
    int m = x_dims[dim_size - 2];
    int n = x_dims[dim_size - 1];
    int nrhs = y_dims[dim_size - 1];
    int lda = std::max<int>(m, 1);
    int ldb = std::max<int>(1, std::max(m, n));

    Tensor new_x;
    new_x.mutable_data<T>(context.GetPlace(),
                          size_t(batch_count * m * n * sizeof(T)));
93 94
    framework::TensorCopy(x, context.GetPlace(), &new_x);

95 96 97 98
    solution->mutable_data<T>(
        context.GetPlace(),
        size_t(batch_count * std::max(m, n) * nrhs * sizeof(T)));

99 100 101 102 103 104 105 106 107 108 109 110
    if (m >= n) {
      const Tensor& new_y = *context.Input<Tensor>("Y");
      framework::TensorCopy(new_y, context.GetPlace(), solution);
    } else {
      auto* solu_data = solution->data<T>();
      auto* y_data = y->data<T>();
      for (auto i = 0; i < batch_count; i++) {
        for (auto j = 0; j < min_solu_stride; j++) {
          solu_data[i * max_solu_stride + j] = y_data[i * y_stride + j];
        }
      }
    }
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    Tensor input_x_trans = dito.Transpose(new_x);
    Tensor input_y_trans = dito.Transpose(*solution);
    framework::TensorCopy(input_x_trans, new_x.place(), &new_x);
    framework::TensorCopy(input_y_trans, solution->place(), solution);

    auto* x_vector = new_x.data<T>();
    auto* y_vector = solution->data<T>();

    // "gels" divers does not need to compute rank
    int rank_32 = 0;
    int* rank_data = nullptr;
    int* rank_working_ptr = nullptr;
    if (driver != LapackDriverType::Gels) {
      rank_data = rank->mutable_data<int>(context.GetPlace());
      rank_working_ptr = rank_data;
    }

    // "gelsd" and "gelss" divers need to compute singular values
    ValueType* s_data = nullptr;
    ValueType* s_working_ptr = nullptr;
    int s_stride = 0;
    if (driver == LapackDriverType::Gelsd ||
        driver == LapackDriverType::Gelss) {
      s_data = singular_values->mutable_data<ValueType>(context.GetPlace());
      s_working_ptr = s_data;
      auto s_dims = singular_values->dims();
      s_stride = s_dims[s_dims.size() - 1];
    }

    // "jpvt" is only used for "gelsy" driver
    Tensor jpvt;
    int* jpvt_data = nullptr;
    if (driver == LapackDriverType::Gelsy) {
      jpvt.Resize(framework::make_ddim({std::max<int>(1, n)}));
      jpvt_data = jpvt.mutable_data<int>(context.GetPlace());
    }

    // run once the driver, first to get the optimal workspace size
    int lwork = -1;
    T wkopt;
    ValueType rwkopt;
    int iwkopt = 0;

    if (driver == LapackDriverType::Gels) {
156 157
      pten::funcs::lapackGels('N', m, n, nrhs, x_vector, lda, y_vector, ldb,
                              &wkopt, lwork, &info);
158
    } else if (driver == LapackDriverType::Gelsd) {
159 160 161 162
      pten::funcs::lapackGelsd(m, n, nrhs, x_vector, lda, y_vector, ldb,
                               s_working_ptr, static_cast<ValueType>(rcond),
                               &rank_32, &wkopt, lwork, &rwkopt, &iwkopt,
                               &info);
163
    } else if (driver == LapackDriverType::Gelsy) {
164 165 166
      pten::funcs::lapackGelsy(m, n, nrhs, x_vector, lda, y_vector, ldb,
                               jpvt_data, static_cast<ValueType>(rcond),
                               &rank_32, &wkopt, lwork, &rwkopt, &info);
167
    } else if (driver == LapackDriverType::Gelss) {
168 169 170
      pten::funcs::lapackGelss(m, n, nrhs, x_vector, lda, y_vector, ldb,
                               s_working_ptr, static_cast<ValueType>(rcond),
                               &rank_32, &wkopt, lwork, &rwkopt, &info);
171 172
    }

173
    lwork = std::max<int>(1, static_cast<int>(pten::funcs::Real<T>(wkopt)));
174 175 176 177 178 179 180
    Tensor work;
    work.Resize(framework::make_ddim({lwork}));
    T* work_data = work.mutable_data<T>(context.GetPlace());

    // "rwork" only used for complex inputs and "gelsy/gelsd/gelss" drivers
    Tensor rwork;
    ValueType* rwork_data = nullptr;
181
    if (framework::IsComplexType(framework::TransToProtoVarType(x.dtype())) &&
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        driver != LapackDriverType::Gels) {
      int rwork_len = 0;
      if (driver == LapackDriverType::Gelsy) {
        rwork_len = std::max<int>(1, 2 * n);
      } else if (driver == LapackDriverType::Gelss) {
        rwork_len = std::max<int>(1, 5 * std::min(m, n));
      } else if (driver == LapackDriverType::Gelsd) {
        rwork_len = std::max<int>(1, rwkopt);
      }
      rwork.Resize(framework::make_ddim({rwork_len}));
      rwork_data = rwork.mutable_data<ValueType>(context.GetPlace());
    }

    // "iwork" workspace array is relavant only for "gelsd" driver
    Tensor iwork;
    int* iwork_data = nullptr;
    if (driver == LapackDriverType::Gelsd) {
      iwork.Resize(framework::make_ddim({std::max<int>(1, iwkopt)}));
      iwork_data = iwork.mutable_data<int>(context.GetPlace());
    }

    for (auto i = 0; i < batch_count; ++i) {
      auto* x_input = &x_vector[i * x_stride];
205
      auto* y_input = &y_vector[i * max_solu_stride];
206 207 208 209
      rank_working_ptr = rank_working_ptr ? &rank_data[i] : nullptr;
      s_working_ptr = s_working_ptr ? &s_data[i * s_stride] : nullptr;

      if (driver == LapackDriverType::Gels) {
210 211
        pten::funcs::lapackGels('N', m, n, nrhs, x_input, lda, y_input, ldb,
                                work_data, lwork, &info);
212
      } else if (driver == LapackDriverType::Gelsd) {
213 214 215 216
        pten::funcs::lapackGelsd(m, n, nrhs, x_input, lda, y_input, ldb,
                                 s_working_ptr, static_cast<ValueType>(rcond),
                                 &rank_32, work_data, lwork, rwork_data,
                                 iwork_data, &info);
217
      } else if (driver == LapackDriverType::Gelsy) {
218 219 220
        pten::funcs::lapackGelsy(m, n, nrhs, x_input, lda, y_input, ldb,
                                 jpvt_data, static_cast<ValueType>(rcond),
                                 &rank_32, work_data, lwork, rwork_data, &info);
221
      } else if (driver == LapackDriverType::Gelss) {
222 223 224
        pten::funcs::lapackGelss(m, n, nrhs, x_input, lda, y_input, ldb,
                                 s_working_ptr, static_cast<ValueType>(rcond),
                                 &rank_32, work_data, lwork, rwork_data, &info);
225 226 227 228 229 230 231 232 233 234 235 236 237
      }

      PADDLE_ENFORCE_EQ(
          info, 0,
          platform::errors::PreconditionNotMet(
              "For batch [%d]: Lapack info is not zero but [%d]", i, info));

      if (rank_working_ptr) *rank_working_ptr = static_cast<int>(rank_32);
    }

    Tensor tmp_s = dito.Transpose(*solution);
    framework::TensorCopy(tmp_s, solution->place(), solution);

238 239 240 241 242 243 244 245 246 247 248
    if (m > n) {
      auto* solu_data = solution->data<T>();
      for (auto i = 1; i < batch_count; i++) {
        for (auto j = 0; j < min_solu_stride; j++) {
          solu_data[i * min_solu_stride + j] =
              solu_data[i * max_solu_stride + j];
        }
      }
    }

    solution->Resize(UDDim(solution_dim));
249 250 251
  }
};

252 253 254 255 256
template <typename DeviceContext, typename T>
void BatchedOrmqr(const DeviceContext& dev_ctx, bool left, bool transpose,
                  int batch_size, int m, int n, int k, T* a, int a_stride,
                  T* tau, int tau_stride, T* other, int other_stride);

257 258
}  // namespace operators
}  // namespace paddle