conv_op.h 18.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
18
#include <vector>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
25
#include "paddle/fluid/platform/create_tensor_with_allocationptr.h"
26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
31 32
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
33

武毅 已提交
34 35
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
36 37
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
38
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
39 40 41 42 43 44 45 46
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE(
      output_size > 0,
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
47 48
  return output_size;
}
49 50 51 52
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
53 54
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
55
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
56 57 58
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
59
  }
C
chengduoZH 已提交
60
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
61
}
武毅 已提交
62 63 64 65 66

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
67 68 69 70
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
71 72
};

C
chengduoZH 已提交
73 74
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
88 89 90
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
91 92 93
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
94 95 96 97

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
98 99
};

C
chengduoZH 已提交
100
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
101 102 103
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
104 105 106 107

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
108 109
};

Q
QI JUN 已提交
110
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
111
class GemmConvKernel : public framework::OpKernel<T> {
112 113 114
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
115 116 117 118
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
119 120 121
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
122
    int groups = context.Attr<int>("groups");
123 124
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
125
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
126

127 128
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
129 130
    const int batch_size = static_cast<int>(input->dims()[0]);

C
chengduoZH 已提交
131
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
132
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
133
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
134
    std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
135

H
hedaoyuan 已提交
136
    // use col_shape in the im2col calculation
C
chengduoZH 已提交
137 138
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
139 140 141 142 143 144 145
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
146 147
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
148
    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
149 150 151
    // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
    // o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
152
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
153

C
chengduoZH 已提交
154
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
H
hedaoyuan 已提交
155
    Tensor col;
H
hedaoyuan 已提交
156 157 158
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
159
    Tensor col_matrix;
C
chengduoZH 已提交
160
    if (is_expand) {
161 162 163 164 165 166 167
      auto tmp_allocation_ptr =
          platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
              framework::product(col_shape) * sizeof(T));
      Tensor tep_tensor =
          platform::GetTensor<T>(std::move(tmp_allocation_ptr), col_shape);

      col.ShareDataWith(tep_tensor);
C
chengduoZH 已提交
168 169 170
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
171

172 173
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
174

H
hedaoyuan 已提交
175 176
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
177 178
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
179 180 181 182 183 184 185 186
    framework::DDim output_matrix_shape = {
        output->dims()[1],
        output->numel() / (output->dims()[0] * output->dims()[1])};

    // convolution operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;

Q
QI JUN 已提交
187 188
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
189

Y
Yu Yang 已提交
190
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
191 192 193
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
194

C
chengduoZH 已提交
195 196
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
197

C
chengduoZH 已提交
198
        if (!is_expand) {
C
chengduoZH 已提交
199 200 201
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
202
        } else if (data_dim == 2U) {
C
chengduoZH 已提交
203
          // im2col
Q
QI JUN 已提交
204
          im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
205 206 207
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
208
        } else if (data_dim == 3U) {
C
chengduoZH 已提交
209
          // vol2col
Q
QI JUN 已提交
210
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
211
        }
C
chengduoZH 已提交
212 213 214 215

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
216 217
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
218
      }
219 220 221 222
    }
  }
};

Q
QI JUN 已提交
223
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
224
class GemmConvGradKernel : public framework::OpKernel<T> {
225 226
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
227 228 229 230 231
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
232
    Tensor* filter_grad =
H
hedaoyuan 已提交
233
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
234 235 236 237
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
238

C
chengduoZH 已提交
239 240
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
241
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
242 243
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
244
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
H
hedaoyuan 已提交
245

C
chengduoZH 已提交
246
    const int batch_size = static_cast<int>(input->dims()[0]);
H
hedaoyuan 已提交
247

248 249
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
250
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
251
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
252
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
253 254
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(output_grad->dims()));
C
chengduoZH 已提交
255

C
chengduoZH 已提交
256 257 258
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
259 260 261 262 263 264 265
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
266
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
267 268

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
269 270 271 272
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
273
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
274

275 276
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
277

C
chengduoZH 已提交
278 279
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
280 281 282
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
C
chengduoZH 已提交
283 284 285
        output_grad->dims()[1],
        output_grad->numel() /
            (output_grad->dims()[0] * output_grad->dims()[1])};
C
chengduoZH 已提交
286

C
chengduoZH 已提交
287 288 289 290
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
C
chengduoZH 已提交
291

C
chengduoZH 已提交
292
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
C
chengduoZH 已提交
293 294 295 296
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
297
    Tensor col_matrix;
C
chengduoZH 已提交
298
    if (is_expand) {
299 300 301 302 303 304 305
      auto tmp_allocation_ptr =
          platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
              framework::product(col_shape) * sizeof(T));
      Tensor tep_tensor =
          platform::GetTensor<T>(std::move(tmp_allocation_ptr), col_shape);

      col.ShareDataWith(tep_tensor);
C
chengduoZH 已提交
306 307 308
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
309

Q
QI JUN 已提交
310
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
311
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
312 313 314 315

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
316 317 318
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
C
chengduoZH 已提交
319
        set_zero(dev_ctx, input_grad, static_cast<T>(0));
C
chengduoZH 已提交
320
      }
Q
QI JUN 已提交
321 322
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
323

C
chengduoZH 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
338 339
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
340
          }
C
chengduoZH 已提交
341 342
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
343

C
chengduoZH 已提交
344
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
345
            col2im(dev_ctx, col, dilations, strides,
C
chengduoZH 已提交
346 347 348
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &in_grad_slice);
C
chengduoZH 已提交
349
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
350
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
351
          }
C
chengduoZH 已提交
352 353 354 355 356 357 358 359
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
360 361 362
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
363 364 365 366 367 368 369 370 371
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
372

C
chengduoZH 已提交
373
          if (!is_expand) {
C
chengduoZH 已提交
374 375 376
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
377
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
378
            im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
379 380 381
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &col);
C
chengduoZH 已提交
382
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
383
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
384
          }
C
chengduoZH 已提交
385 386 387 388

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
389 390
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
391 392 393 394 395
        }
      }
    }
  }
};
Z
zlx 已提交
396 397 398 399 400 401 402 403 404 405

template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

X
xzl 已提交
406 407 408
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input->dims()[1], 0,
        "The output channels must be a multiple of the input channels");
Z
zlx 已提交
409 410 411 412 413 414 415
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;

    auto& dev_ctx = context.template device_context<DeviceContext>();
416 417
    depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                  output);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    math::DepthwiseConvInputGradFunctor<DeviceContext, T>
        depthwiseConvInputGrad;
    math::DepthwiseConvFilterGradFunctor<DeviceContext, T>
        depthwiseConvFilterGrad;

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
      depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
452
                             paddings, dilations, input_grad);
453 454 455 456 457 458
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings,
459
                              dilations, filter_grad);
460
    }
Z
zlx 已提交
461 462 463
  }
};

464 465
}  // namespace operators
}  // namespace paddle