prepared_operator.cc 20.7 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
20
#include "paddle/fluid/imperative/tracer.h"
21 22
#include "paddle/pten/common/scalar.h"
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
23 24 25
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu/xpu_op_list.h"
#endif
26
DECLARE_bool(check_nan_inf);
27
DECLARE_bool(run_pten_kernel);
28
DECLARE_bool(benchmark);
29

J
Jiabin Yang 已提交
30 31 32
namespace paddle {
namespace imperative {

33 34 35 36 37 38 39 40 41 42
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
43 44 45 46 47 48 49 50 51 52
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
static const framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

68
template <typename VarType>
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
86
      if (tensor && tensor->IsInitialized()) {
87 88 89 90 91 92 93 94
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
95 96 97 98 99 100 101
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
102
                       const framework::OpKernelType& kernel_type,
103
                       const framework::OperatorWithKernel::OpKernelFunc& func,
104
                       platform::DeviceContext* dev_ctx)
105 106 107 108 109 110
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

111 112 113 114 115
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
                       const framework::KernelSignature& kernel_signature,
                       const pten::Kernel& pt_kernel,
116
                       pten::KernelContext* pt_kernel_context,
117 118 119 120 121 122 123 124
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
      run_pten_kernel_(true),
      pt_kernel_signature_(kernel_signature),
125 126
      pt_kernel_(pt_kernel),
      pt_kernel_context_(pt_kernel_context) {}
127

128 129 130 131 132
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
133
                       const framework::AttributeMap& attrs,
134 135
                       const framework::AttributeMap& default_attrs,
                       pten::KernelContext* pt_kernel_context) {
136
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
137
  auto* dev_ctx = pool.Get(place);
138

139 140 141 142 143 144 145 146
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
147 148 149 150
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
151 152
  }
#endif
J
Jiabin Yang 已提交
153

154
  // 1. get expected kernel key
155 156 157
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
      op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
158 159
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(op.Type())) {
    auto pt_kernel_signature = op.GetExpectedPtenKernelArgs(dygraph_exe_ctx);

    VLOG(1) << framework::KernelSignatureToString(pt_kernel_signature);

    auto pt_kernel_name = pten::KernelName(pt_kernel_signature.name);
    auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(expected_kernel_key);
    auto pt_kernel = pten::KernelFactory::Instance().SelectKernel(
        pt_kernel_name, pt_kernel_key);

    if (pt_kernel.IsValid()) {
      VLOG(1) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
              << " | kernel key: " << pt_kernel_key
              << " | kernel: " << pt_kernel;

      // TODO(chenweihang): using CPUKernel when miss device kernel case
      return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
178
                        pt_kernel, pt_kernel_context, dev_ctx);
179 180 181 182 183 184
    } else {
      VLOG(1) << "Dynamic mode ChoosePtenKernel - kernel `" << pt_kernel_name
              << "` not found.";
    }
  }

185
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
186 187
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
188 189 190 191 192
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
193 194 195

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
196
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
197 198 199 200
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(op.Type()))) {
201 202 203
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
204 205 206
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
207 208 209 210
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
211 212 213
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
214 215 216
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
217
#endif
218 219
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
220 221 222 223
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
224

225 226 227 228
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

229
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
230 231
}

232 233 234 235
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
236
                               const framework::AttributeMap& attrs,
237 238 239 240
                               const framework::AttributeMap& default_attrs,
                               pten::KernelContext* pt_kernel_context) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs,
                              pt_kernel_context);
241 242 243 244 245 246
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
247
                               const framework::AttributeMap& attrs,
248 249
                               const framework::AttributeMap& default_attrs,
                               pten::KernelContext* pt_kernel_context) {
250
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
251
                                      default_attrs, pt_kernel_context);
252 253
}

254
template <typename VarType>
255
static void BuildDygraphPtenKernelContext(
256 257 258 259
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
260
    platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) {
261 262 263 264 265 266 267
  // TODO(chenweihang): now only work for very simple case,
  // many cases need to be deal with later:
  // 1. the input and output are not tensor
  // 2. the dispensbale, duplicable input and output
  // 3. needless attributes remove
  // 4. use pt Tensor directly
  // 5. kernel input is not DenseTensor
268
  kernel_ctx->SetDeviceContext(dev_ctx);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ins.at(input_names[i]);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    if (kernel_ctx->InputsSize() <= i) {
      paddle::SmallVector<std::shared_ptr<pten::TensorBase>> tmp_inputs;
      for (const auto& var : ins_vector) {
        const auto& variable = var->Var();
        tmp_inputs.emplace_back(
            experimental::MakePtenTensorBaseFromVar(variable, in_def));
      }
      kernel_ctx->EmplaceBackInputs(std::move(tmp_inputs));
    } else {
      size_t input_size = kernel_ctx->InputsSize();
      for (size_t j = 0; j < ins_vector.size(); ++j) {
        if (input_size > i + j) {
          experimental::ReMakePtenDenseTensorFromVar(
              ins_vector[j]->Var(), in_def,
              kernel_ctx->MutableInputAt<pten::DenseTensor>(i + j));
        }
        // TODO(chenweihang): adapt multi-input case later
      }
      kernel_ctx->MutableInputRangeAt(i) =
          std::make_pair(i, i + ins_vector.size());
319 320 321 322 323 324
    }
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& out_def = output_defs.at(i);
    auto& outs_vector = outs.at(output_names[i]);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    if (kernel_ctx->OutputsSize() <= i) {
      paddle::SmallVector<std::shared_ptr<pten::TensorBase>> tmp_outputs;
      for (auto& var : outs_vector) {
        auto* variable = var->MutableVar();
        tmp_outputs.emplace_back(
            experimental::MakePtenTensorBaseFromVar(variable, out_def));
      }
      kernel_ctx->EmplaceBackOutputs(std::move(tmp_outputs));
    } else {
      size_t output_size = kernel_ctx->OutputsSize();
      for (size_t j = 0; j < outs_vector.size(); ++j) {
        if (output_size > i + j) {
          experimental::ReMakePtenDenseTensorFromVar(
              outs_vector[j]->MutableVar(), out_def,
              kernel_ctx->MutableOutputAt<pten::DenseTensor>(i + j));
        }
        // TODO(chenweihang): adapt multi-output case later
      }
      kernel_ctx->MutableOutputRangeAt(i) =
          std::make_pair(i, i + outs_vector.size());
345 346 347 348 349 350 351 352 353 354
    }
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
    if (attr_defs[i].type_index == std::type_index(typeid(pten::Scalar))) {
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
      if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
355
        kernel_ctx->EmplaceBackAttr(
356
            std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
357 358
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::string))) {
359
        kernel_ctx->EmplaceBackAttr(
360
            std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
361 362 363 364 365 366 367 368 369
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "unsupported cast op attribute `%s` to Scalar when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    } else {
      // TODO(chenweihang): support other attrs later
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
370
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
371
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
372
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
373
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
374
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
375
      } else if (attr_defs[i].type_index ==
376 377 378 379 380 381 382 383
                     std::type_index(typeid(std::vector<int64_t>)) &&
                 std::type_index(attr.type()) ==
                     std::type_index(typeid(std::vector<int>))) {
        // Emplace Back Attr according to the type of Pten_Kernel args.
        const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
        const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                     vector_int_attr.end());
        kernel_ctx->EmplaceBackAttr(vector_int64_attr);
384 385 386 387 388 389 390 391 392 393
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "unsupported cast op attribute `%s` when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

394 395 396
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
397
    const framework::OpKernelType& kernel_type,
398
    const framework::OperatorWithKernel::OpKernelFunc& func,
399
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
400 401
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
402 403
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
404

405
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
406
                                                    &default_attrs, op.Type());
407 408
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);
H
hong 已提交
409

410
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
411
                                        attrs, default_attrs));
412

413 414 415 416 417
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

418 419 420 421 422 423 424 425 426 427 428 429 430
  /*For profiling/benchmark only*/
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
#if defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_CUDA_SUCCESS(hipGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
446
}
H
hong 已提交
447

448 449 450 451
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
    const framework::KernelSignature& pt_kernel_signature,
452 453 454
    const pten::Kernel& pt_kernel, pten::KernelContext* pt_kernel_context,
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
455 456 457 458 459 460
    const framework::AttributeMap& default_attrs) {
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
                                                    &default_attrs, op.Type());
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);

461 462 463 464 465
  BuildDygraphPtenKernelContext<VarType>(pt_kernel_signature, pt_kernel, ins,
                                         outs, attrs, default_attrs, dev_ctx,
                                         pt_kernel_context);

  pt_kernel(pt_kernel_context);
466

467 468
  // Ensure that it does not affect the VarBase life cycle management
  pt_kernel_context->ClearData();
469 470 471 472 473

  // TODO(chenweihang): add debug flags later
  // TODO(chenweihang): deal with complex cases later
}

474 475
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
476 477
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
478 479
  if (run_pten_kernel_) {
    PreparedOpRunPtImpl<VarBase>(op_, pt_kernel_signature_, pt_kernel_,
480 481
                                 pt_kernel_context_, dev_ctx_, ins, outs, attrs,
                                 default_attrs);
482 483 484 485
  } else {
    PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
                               outs, attrs, default_attrs);
  }
486
}
H
hong 已提交
487

488 489
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
490 491
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
492 493
  if (run_pten_kernel_) {
    PreparedOpRunPtImpl<VariableWrapper>(op_, pt_kernel_signature_, pt_kernel_,
494 495
                                         pt_kernel_context_, dev_ctx_, ins,
                                         outs, attrs, default_attrs);
496 497 498 499
  } else {
    PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
                                       ins, outs, attrs, default_attrs);
  }
J
Jiabin Yang 已提交
500 501 502 503
}

}  // namespace imperative
}  // namespace paddle