c_reduce_op.h 11.4 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"

27
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
28
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
L
lilong12 已提交
29
#include "paddle/fluid/platform/collective_helper.h"
30 31 32
#endif

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
lilong12 已提交
33 34
#include "paddle/fluid/platform/nccl_helper.h"
#endif
35 36

#if defined(PADDLE_WITH_XPU_BKCL)
37
#include "paddle/fluid/platform/device/xpu/bkcl_helper.h"
38 39
#endif

40 41 42 43
#if defined(PADDLE_WITH_GLOO)
#include <gloo/reduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
L
lilong12 已提交
44

45 46 47 48
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/hccl_helper.h"
#endif

L
lilong12 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
namespace paddle {
namespace operators {

enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

template <ReduceType red_type, typename T>
class CReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
74 75 76 77 78 79 80 81 82 83
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
    auto root_id = ctx.Attr<int>("root_id");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
L
lilong12 已提交
84
    PADDLE_ENFORCE_EQ(
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::ReduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    opts.setRoot(root_id);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::reduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
L
lilong12 已提交
123 124 125
  }
};

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
template <ReduceType red_type, typename T>
class CReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
    auto in = ctx.Input<framework::LoDTensor>("X");
    auto out = ctx.Output<framework::LoDTensor>("Out");
    auto place = ctx.GetPlace();
    HcclDataType dtype = platform::ToHCCLDataType(in->type());
    int64_t numel = in->numel();

    void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->data<T>()));
    void* recvbuff = reinterpret_cast<void*>(out->data<T>());

    int ring_id = ctx.Attr<int>("ring_id");
    int root_id = ctx.Attr<int>("root_id");
    std::string group =
        std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
    auto comm =
        paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);

    aclrtStream stream = nullptr;
    auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
    if (ctx.Attr<bool>("use_calc_stream")) {
      stream = static_cast<platform::NPUDeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    int rank_id = comm->rank();

    HcclReduceOp hccl_red_type = HCCL_REDUCE_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REDUCE_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REDUCE_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REDUCE_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REDUCE_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    VLOG(3) << "begin hccl reduce, parameter is: "
            << "input num: " << numel << "root_id: " << root_id
            << "dtype: " << dtype << "hccl_red_type: " << hccl_red_type
            << ", group is: " << group;

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
        sendbuff, recvbuff, numel, dtype, hccl_red_type, comm->comm(),
        reinterpret_cast<void*>(stream)));

    if (rank_id != root_id) {
      auto npu_place = BOOST_GET_CONST(platform::NPUPlace, place);
      memory::Copy(npu_place, reinterpret_cast<void*>(out->data<T>()),
                   npu_place,
                   reinterpret_cast<void*>(const_cast<T*>(in->data<T>())),
                   numel * sizeof(T), stream);
    }

    out->Resize(in->dims());
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with NPU."));
#endif
  }
};

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
template <ReduceType red_type, typename T>
class CReduceOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    BKCLDataType dtype = platform::ToBKCLDataType(in->type());
    int64_t numel = in->numel();
    const void* sendbuff = in->data<void>();
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    int root = ctx.Attr<int>("root_id");
    auto comm = platform::BKCLCommContext::Instance().Get(rid, place);

    XPUStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::XPUDeviceContext*>(dev_ctx)
                   ->x_context()
                   ->xpu_stream;
    } else {
      stream = comm->stream();
    }

    BKCLOp bkcl_red_type = BKCL_ADD;
    switch (red_type) {
      case kRedSum:
        bkcl_red_type = BKCL_ADD;
        break;

      case kRedMax:
        bkcl_red_type = BKCL_MAX;
        break;

      case kRedMin:
        bkcl_red_type = BKCL_MIN;
        break;

      case kRedProd:
        bkcl_red_type = BKCL_PRODUCT;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    PADDLE_ENFORCE_EQ(bkcl_reduce(comm->comm(), sendbuff, recvbuff, numel,
                                  dtype, bkcl_red_type, root, stream),
                      BKCL_SUCCESS, platform::errors::PreconditionNotMet(
                                        "BKCL all reduce failed"));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should be compiled with XPU."));
#endif
  }
};

L
lilong12 已提交
268 269 270 271
template <ReduceType red_type, typename T>
class CReduceOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
272
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
lilong12 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    ncclDataType_t dtype = platform::ToNCCLDataType(in->type());
    int64_t numel = in->numel();
    const void* sendbuff = in->data<void>();
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    int root = ctx.Attr<int>("root_id");
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);

287
    gpuStream_t stream = nullptr;
L
lilong12 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
        PADDLE_ENFORCE_EQ(true, false, platform::errors::InvalidArgument(
                                           "red_type must be one of kRedSum, "
                                           "kRedMax, kRedMin, kRedProd."));
    }

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclReduce(
        sendbuff, recvbuff, numel, dtype, nccl_red_type, root, comm->comm(),
        stream));
#else
    PADDLE_ENFORCE_EQ(true, false,
                      platform::errors::Unavailable(
                          "PaddlePaddle should compile with GPU.."));
#endif
  }
};

class CReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be reduced.");
    AddOutput("Out", "(Tensor) the reduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
337 338 339 340
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for reduce.")
        .SetDefault("tag");
#endif
L
lilong12 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    AddAttr<int>("root_id", "(int default 0) root id.").SetDefault(0);
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddComment(string::Sprintf(R"DOC(
CReduce %s Operator

Call collective Reduce with reduce type %s. If input and output are
the same variable, in-place reduce will be used.
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

}  // namespace operators
}  // namespace paddle