data.html 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Data Reader Interface and DataSets &mdash; PaddlePaddle  文档</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/>
        <link rel="up" title="API" href="../index_cn.html"/>
37 38
        <link rel="next" title="Training and Inference" href="run_logic.html"/>
        <link rel="prev" title="Parameter Attribute" href="config/attr.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
114
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/concepts/use_concepts_cn.html">基本使用概念</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_cn.html">API</a><ul class="current">
145 146 147
<li class="toctree-l2"><a class="reference internal" href="model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/layer.html">Layers</a></li>
148
<li class="toctree-l3"><a class="reference internal" href="config/evaluators.html">Evaluators</a></li>
149 150 151 152 153 154 155 156
<li class="toctree-l3"><a class="reference internal" href="config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="run_logic.html">训练与应用</a></li>
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../index_cn.html">API</a> > </li>
      
182
    <li>Data Reader Interface and DataSets</li>
183 184 185 186 187 188 189 190
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
191 192
  <div class="section" id="data-reader-interface-and-datasets">
<h1>Data Reader Interface and DataSets<a class="headerlink" href="#data-reader-interface-and-datasets" title="永久链接至标题"></a></h1>
193 194
<div class="section" id="datatypes">
<h2>DataTypes<a class="headerlink" href="#datatypes" title="永久链接至标题"></a></h2>
195
<dl class="function">
196 197
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">dense_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
<dd><p>Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
214
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">InputType</p>
215 216 217 218 219 220 221
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
222 223
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">dense_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
224 225 226 227 228 229 230 231 232
<dd><p>Data type of a sequence of dense vector.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of dense vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">An input type object</td>
</tr>
233
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">InputType</td>
234 235 236 237 238 239
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
240 241
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">integer_value</code><span class="sig-paren">(</span><em>value_range</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
242 243 244 245 246 247 248 249 250 251 252 253 254 255
<dd><p>Data type of integer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
<li><strong>value_range</strong> (<em>int</em>) &#8211; range of this integer.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">An input type object</p>
</td>
</tr>
256
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">InputType</p>
257 258 259 260 261 262 263
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
264 265
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">integer_value_sequence</code><span class="sig-paren">(</span><em>value_range</em><span class="sig-paren">)</span></dt>
266 267 268 269 270 271 272 273 274 275 276 277
<dd><p>Data type of a sequence of integer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>value_range</strong> (<em>int</em>) &#8211; range of each element.</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
278 279
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_binary_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
<dd><p>Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
295
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">InputType</p>
296 297 298 299 300 301 302
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
303 304
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_binary_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
305 306 307 308 309 310 311 312 313 314 315 316
<dd><dl class="docutils">
<dt>Data type of a sequence of sparse vector, which every element is either zero</dt>
<dd>or one.</dd>
</dl>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of sparse vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">An input type object</td>
</tr>
317
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">InputType</td>
318 319 320 321 322 323
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
324 325
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_non_value_slot</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
<dd><p>Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
341
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">InputType</p>
342 343 344 345 346 347 348
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
349 350
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_value_slot</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
<dd><p>Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
366
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">InputType</p>
367 368 369 370 371 372 373
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
374 375
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
<dd><p>Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
391
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">InputType</p>
392 393 394 395 396 397 398
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
399 400
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
401 402 403 404 405 406 407 408 409 410
<dd><p>Data type of a sequence of sparse vector, which most elements are zero,
others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of sparse vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">An input type object</td>
</tr>
411
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">InputType</td>
412 413 414 415 416 417
</tr>
</tbody>
</table>
</dd></dl>

<dl class="class">
418 419
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.data_type.</code><code class="descname">InputType</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type</em>, <em>tp</em><span class="sig-paren">)</span></dt>
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
<dd><p>InputType is the base class for paddle input types.</p>
<div class="admonition note">
<p class="first admonition-title">注解</p>
<p class="last">this is a base class, and should never be used by user.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of input. If the input is an integer, it means the
value range. Otherwise, it means the size of layer.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of input. 0 means it is not a sequence. 1
means it is a variable length sequence. 2 means it is a
nested sequence.</li>
<li><strong>type</strong> (<em>int</em>) &#8211; data type of input.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
444 445
<div class="section" id="datafeeder">
<h2>DataFeeder<a class="headerlink" href="#datafeeder" title="永久链接至标题"></a></h2>
446
<dl class="class">
447 448
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.data_feeder.</code><code class="descname">DataFeeder</code><span class="sig-paren">(</span><em>data_types</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
449 450 451 452 453 454
<dd><p>DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sample.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.</p>
455 456 457 458 459 460 461 462 463 464 465 466 467
<p>The simple usage shows below</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">feeding</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="s1">&#39;label&#39;</span><span class="p">]</span>
<span class="n">data_types</span> <span class="o">=</span> <span class="n">enumerate_data_types_of_data_layers</span><span class="p">(</span><span class="n">topology</span><span class="p">)</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">DataFeeder</span><span class="p">(</span><span class="n">data_types</span><span class="o">=</span><span class="n">data_types</span><span class="p">,</span> <span class="n">feeding</span><span class="o">=</span><span class="n">feeding</span><span class="p">)</span>

<span class="n">minibatch_data</span> <span class="o">=</span> <span class="p">[([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span> <span class="mi">5</span><span class="p">)]</span>

<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
</pre></div>
</div>
<p>If mini-batch data and data layers are not one to one mapping, we
could pass a dictionary to feeding parameter to represent the mapping
relationship.</p>
468 469
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data_types</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">784</span><span class="p">)),</span>
              <span class="p">(</span><span class="s1">&#39;label&#39;</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">integer_value</span><span class="p">(</span><span class="mi">10</span><span class="p">))]</span>
470 471
<span class="n">feeding</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;image&#39;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;label&#39;</span><span class="p">:</span><span class="mi">1</span><span class="p">}</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">DataFeeder</span><span class="p">(</span><span class="n">data_types</span><span class="o">=</span><span class="n">data_types</span><span class="p">,</span> <span class="n">feeding</span><span class="o">=</span><span class="n">feeding</span><span class="p">)</span>
472 473 474 475 476 477 478 479
<span class="n">minibatch_data</span> <span class="o">=</span> <span class="p">[</span>
                   <span class="p">(</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span><span class="mf">2.0</span><span class="p">,</span><span class="mf">3.0</span><span class="p">,</span><span class="mf">4.0</span><span class="p">],</span> <span class="mi">5</span><span class="p">,</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">]</span> <span class="p">),</span>  <span class="c1"># first sample</span>
                   <span class="p">(</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span><span class="mf">2.0</span><span class="p">,</span><span class="mf">3.0</span><span class="p">,</span><span class="mf">4.0</span><span class="p">],</span> <span class="mi">5</span><span class="p">,</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">]</span> <span class="p">)</span>   <span class="c1"># second sample</span>
                 <span class="p">]</span>
<span class="c1"># or minibatch_data = [</span>
<span class="c1">#                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ],  # first sample</span>
<span class="c1">#                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ]   # second sample</span>
<span class="c1">#                     ]</span>
480
<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
481 482 483 484 485 486 487 488 489 490 491 492 493 494
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">注解</p>
<p class="last">This module is for internal use only. Users should use the <cite>reader</cite>
interface.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>data_types</strong> (<em>list</em>) &#8211; A list to specify data name and type. Each item is
a tuple of (data_name, data_type).</li>
495 496
<li><strong>feeding</strong> (<em>dict|collections.Sequence|None</em>) &#8211; A dictionary or a sequence to specify the position of each
data in the input data.</li>
497 498 499 500 501 502
</ul>
</td>
</tr>
</tbody>
</table>
<dl class="method">
503 504
<dt>
<code class="descname">convert</code><span class="sig-paren">(</span><em>dat</em>, <em>argument=None</em><span class="sig-paren">)</span></dt>
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>dat</strong> (<em>list</em>) &#8211; A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.</li>
<li><strong>argument</strong> (<em>py_paddle.swig_paddle.Arguments</em>) &#8211; An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</dd></dl>

</div>
525 526
<div class="section" id="reader">
<h2>Reader<a class="headerlink" href="#reader" title="永久链接至标题"></a></h2>
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
<p>At training and testing time, PaddlePaddle programs need to read data. To ease
the users&#8217; work to write data reading code, we define that</p>
<ul class="simple">
<li>A <em>reader</em> is a function that reads data (from file, network, random number
generator, etc) and yields data items.</li>
<li>A <em>reader creator</em> is a function that returns a reader function.</li>
<li>A <em>reader decorator</em> is a function, which accepts one or more readers, and
returns a reader.</li>
<li>A <em>batch reader</em> is a function that reads data (from <em>reader</em>, file, network,
random number generator, etc) and yields a batch of data items.</li>
</ul>
<div class="section" id="data-reader-interface">
<h3>Data Reader Interface<a class="headerlink" href="#data-reader-interface" title="永久链接至标题"></a></h3>
<p>Indeed, <em>data reader</em> doesn&#8217;t have to be a function that reads and yields data
items. It can be any function with no parameter that creates a iterable
(anything can be used in <code class="code docutils literal"><span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">iterable</span></code>):</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">iterable</span> <span class="o">=</span> <span class="n">data_reader</span><span class="p">()</span>
</pre></div>
</div>
<p>Element produced from the iterable should be a <strong>single</strong> entry of data,
<strong>not</strong> a mini batch. That entry of data could be a single item, or a tuple of
items.
Item should be of <a class="reference external" href="http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types">supported type</a> (e.g., numpy 1d
array of float32, int, list of int)</p>
<p>An example implementation for single item data reader creator:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span>
<span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p>An example implementation for multiple item data reader creator:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image_and_label</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">label</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">),</span> <span class="n">label</span>
<span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p>TODO(yuyang18): Should we add whole design doc here?</p>
<dl class="function">
569 570
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">map_readers</code><span class="sig-paren">(</span><em>func</em>, <em>*readers</em><span class="sig-paren">)</span></dt>
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
<dd><p>Creates a data reader that outputs return value of function using
output of each data readers as arguments.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>func</strong> &#8211; function to use. The type of func should be (Sample) =&gt; Sample</li>
<li><strong>readers</strong> &#8211; readers whose outputs will be used as arguments of func.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Type:</th><td class="field-body"><p class="first">callable</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the created data reader.</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
597 598
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">buffered</code><span class="sig-paren">(</span><em>reader</em>, <em>size</em><span class="sig-paren">)</span></dt>
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
<dd><p>Creates a buffered data reader.</p>
<p>The buffered data reader will read and save data entries into a
buffer. Reading from the buffered data reader will proceed as long
as the buffer is not empty.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; max buffer size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">the buffered data reader.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
621 622
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">compose</code><span class="sig-paren">(</span><em>*readers</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
<dd><p>Creates a data reader whose output is the combination of input readers.</p>
<p>If input readers output following data entries:
(1, 2)    3    (4, 5)
The composed reader will output:
(1, 2, 3, 4, 5)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>readers</strong> &#8211; readers that will be composed together.</li>
<li><strong>check_alignment</strong> (<em>bool</em>) &#8211; if True, will check if input readers are aligned
correctly. If False, will not check alignment and trailing outputs
will be discarded. Defaults to True.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the new data reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">引发:</th><td class="field-body"><p class="first last"><strong>ComposeNotAligned</strong> &#8211; outputs of readers are not aligned.
Will not raise when check_alignment is set to False.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
652 653
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">chain</code><span class="sig-paren">(</span><em>*readers</em><span class="sig-paren">)</span></dt>
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
<dd><p>Creates a data reader whose output is the outputs of input data
readers chained together.</p>
<p>If input readers output following data entries:
[0, 0, 0]
[1, 1, 1]
[2, 2, 2]
The chained reader will output:
[0, 0, 0, 1, 1, 1, 2, 2, 2]</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>readers</strong> &#8211; input readers.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">the new data reader.</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
677 678
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">shuffle</code><span class="sig-paren">(</span><em>reader</em>, <em>buf_size</em><span class="sig-paren">)</span></dt>
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
<dd><p>Creates a data reader whose data output is shuffled.</p>
<p>Output from the iterator that created by original reader will be
buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
is determined by argument buf_size.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the original reader whose output will be shuffled.</li>
<li><strong>buf_size</strong> (<em>int</em>) &#8211; shuffle buffer size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the new reader whose output is shuffled.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
704 705
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">firstn</code><span class="sig-paren">(</span><em>reader</em>, <em>n</em><span class="sig-paren">)</span></dt>
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
<dd><p>Limit the max number of samples that reader could return.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>n</strong> (<em>int</em>) &#8211; the max number of samples that return.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the decorated reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
728
<p>Creator package contains some simple reader creator, which could be used in user
729 730
program.</p>
<dl class="function">
731 732
<dt>
<code class="descclassname">paddle.v2.reader.creator.</code><code class="descname">np_array</code><span class="sig-paren">(</span><em>x</em><span class="sig-paren">)</span></dt>
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
<dd><p>Creates a reader that yields elements of x, if it is a
numpy vector. Or rows of x, if it is a numpy matrix.
Or any sub-hyperplane indexed by the highest dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>x</strong> &#8211; the numpy array to create reader from.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">data reader created from x.</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
749 750
<dt>
<code class="descclassname">paddle.v2.reader.creator.</code><code class="descname">text_file</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt>
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
<dd><p>Creates a data reader that outputs text line by line from given text file.
Trailing new line (&#8216;\n&#8217;) of each line will be removed.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Path:</th><td class="field-body">path of the text file.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">data reader of text file</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
766 767
<div class="section" id="minibatch">
<h2>minibatch<a class="headerlink" href="#minibatch" title="永久链接至标题"></a></h2>
768
<dl class="function">
769 770
<dt>
<code class="descclassname">paddle.v2.minibatch.</code><code class="descname">batch</code><span class="sig-paren">(</span><em>reader</em>, <em>batch_size</em><span class="sig-paren">)</span></dt>
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
<dd><p>Create a batched reader.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>batch_size</strong> (<em>int</em>) &#8211; size of each mini-batch</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the batched reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="dataset">
<h2>Dataset<a class="headerlink" href="#dataset" title="永久链接至标题"></a></h2>
795 796 797
<p>Dataset package.</p>
<div class="section" id="mnist">
<h3>mnist<a class="headerlink" href="#mnist" title="永久链接至标题"></a></h3>
798 799
<p>MNIST dataset.</p>
<p>This module will download dataset from <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a> and
800
parse training set and test set into paddle reader creators.</p>
801
<dl class="function">
802 803
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
804
<dd><p>MNIST training set creator.</p>
805 806 807 808 809 810
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
811
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
812 813 814 815 816 817 818 819
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
820 821
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
822
<dd><p>MNIST test set creator.</p>
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
838 839
<div class="section" id="cifar">
<h3>cifar<a class="headerlink" href="#cifar" title="永久链接至标题"></a></h3>
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
<p>CIFAR dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a> and parse train/test set into
paddle reader creators.</p>
<p>The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.</p>
<p>The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-100 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 99].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
871
<dd><p>CIFAR-100 test set creator.</p>
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-10 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
907
<dd><p>CIFAR-10 test set creator.</p>
908 909 910 911 912 913 914 915 916 917 918 919 920 921
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

922 923 924
</div>
<div class="section" id="conll05">
<h3>conll05<a class="headerlink" href="#conll05" title="永久链接至标题"></a></h3>
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
<p>Conll05 dataset.
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the word, verb and label dictionary of Wikipedia corpus.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_embedding</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the trained word vector based on Wikipedia corpus.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Conll05 test set creator.</p>
<p>Because the training dataset is not free, the test dataset is used for
training. It returns a reader creator, each sample in the reader is nine
features, including sentence sequence, predicate, predicate context,
predicate context flag and tagged sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

963 964 965
</div>
<div class="section" id="imdb">
<h3>imdb<a class="headerlink" href="#imdb" title="永久链接至标题"></a></h3>
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
<p>IMDB dataset.</p>
<p>This module downloads IMDB dataset from
<a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/">http://ai.stanford.edu/%7Eamaas/data/sentiment/</a>. This dataset contains a set
of 25,000 highly polar movie reviews for training, and 25,000 for testing.
Besides, this module also provides API for building dictionary.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>pattern</em>, <em>cutoff</em><span class="sig-paren">)</span></dt>
<dd><p>Build a word dictionary from the corpus. Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB training set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB test set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

1018
</div>
1019 1020
<div class="section" id="imikolov">
<h3>imikolov<a class="headerlink" href="#imikolov" title="永久链接至标题"></a></h3>
1021 1022 1023 1024 1025 1026
<p>imikolov&#8217;s simple dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a> and parse training set and test set
into paddle reader creators.</p>
<dl class="function">
<dt>
1027
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>typo_freq=50</em><span class="sig-paren">)</span></dt>
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
<dd><p>Build a word dictionary from the corpus,  Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em><span class="sig-paren">)</span></dt>
<dd><p>imikolov training set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Training reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em><span class="sig-paren">)</span></dt>
<dd><p>imikolov test set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Test reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1084
</div>
1085 1086
<div class="section" id="movielens">
<h3>movielens<a class="headerlink" href="#movielens" title="永久链接至标题"></a></h3>
1087
<p>Movielens 1-M dataset.</p>
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
<p>Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from
<a class="reference external" href="http://files.grouplens.org/datasets/movielens/ml-1m.zip">http://files.grouplens.org/datasets/movielens/ml-1m.zip</a> and parse training
set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">get_movie_title_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie title dictionary.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_movie_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of movie id.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_user_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of user id.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_job_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of job id.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_categories</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie categoriges dictionary.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">user_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get user info dictionary.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie info dictionary.</p>
</dd></dl>

<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">MovieInfo</code><span class="sig-paren">(</span><em>index</em>, <em>categories</em>, <em>title</em><span class="sig-paren">)</span></dt>
<dd><p>Movie id, title and categories information are stored in MovieInfo.</p>
</dd></dl>

<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">UserInfo</code><span class="sig-paren">(</span><em>index</em>, <em>gender</em>, <em>age</em>, <em>job_id</em><span class="sig-paren">)</span></dt>
<dd><p>User id, gender, age, and job information are stored in UserInfo.</p>
</dd></dl>

1147
</div>
1148 1149
<div class="section" id="sentiment">
<h3>sentiment<a class="headerlink" href="#sentiment" title="永久链接至标题"></a></h3>
1150 1151 1152
<p>The script fetch and preprocess movie_reviews data set that provided by NLTK</p>
<p>TODO(yuyang18): Complete dataset.</p>
<dl class="function">
1153 1154
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">get_word_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
1155 1156 1157 1158 1159 1160 1161
<dd><p>Sorted the words by the frequency of words which occur in sample
:return:</p>
<blockquote>
<div>words_freq_sorted</div></blockquote>
</dd></dl>

<dl class="function">
1162 1163
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
1164
<dd><p>Default training set reader creator</p>
1165 1166 1167
</dd></dl>

<dl class="function">
1168 1169
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
1170 1171 1172 1173
<dd><p>Default test set reader creator</p>
</dd></dl>

</div>
1174 1175 1176
<div class="section" id="uci-housing">
<h3>uci_housing<a class="headerlink" href="#uci-housing" title="永久链接至标题"></a></h3>
<p>UCI Housing dataset.</p>
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
<p>This module will download dataset from
<a class="reference external" href="https://archive.ics.uci.edu/ml/machine-learning-databases/housing/">https://archive.ics.uci.edu/ml/machine-learning-databases/housing/</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING training set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING test set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

1216 1217 1218
</div>
<div class="section" id="wmt14">
<h3>wmt14<a class="headerlink" href="#wmt14" title="永久链接至标题"></a></h3>
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
<p>WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
<a class="reference external" href="http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz">http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">train</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">test</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 test set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
1273
        <a href="run_logic.html" class="btn btn-neutral float-right" title="Training and Inference" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
1274 1275
      
      
1276
        <a href="config/attr.html" class="btn btn-neutral" title="Parameter Attribute" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
1310 1311
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
1312 1313 1314 1315 1316 1317
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
1318
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
1332
</html>