softmax_with_cross_entropy_op.h 3.3 KB
Newer Older
C
caoying03 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
caoying03 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
caoying03 已提交
14 15 16 17

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
18
#include "paddle/operators/math/cross_entropy.h"
C
caoying03 已提交
19
#include "paddle/operators/math/softmax.h"
C
caoying03 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

29
template <typename T>
Y
Yu Yang 已提交
30
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
C
caoying03 已提交
31
 public:
C
caoying03 已提交
32
  void Compute(const framework::ExecutionContext& context) const override {
C
caoying03 已提交
33
    PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()),
34
                   "This kernel only runs on CPU.");
C
caoying03 已提交
35
    const Tensor* logits = context.Input<Tensor>("Logits");
36
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
37
    Tensor* softmax = context.Output<Tensor>("Softmax");
38
    Tensor* loss = context.Output<Tensor>("Loss");
C
caoying03 已提交
39

40 41
    softmax->mutable_data<T>(context.GetPlace());
    loss->mutable_data<T>(context.GetPlace());
C
caoying03 已提交
42

Q
qijun 已提交
43 44
    math::SoftmaxFunctor<platform::CPUPlace, T>()(context.device_context(),
                                                  logits, softmax);
45
    math::CrossEntropyFunctor<platform::CPUPlace, T>()(
Q
qijun 已提交
46 47
        context.device_context(), loss, softmax, labels,
        context.Attr<bool>("softLabel"));
C
caoying03 已提交
48
  }
C
caoying03 已提交
49 50
};

51
template <typename T>
Y
Yu Yang 已提交
52
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
C
caoying03 已提交
53
 public:
54
  void Compute(const framework::ExecutionContext& context) const override {
55 56 57
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    const Tensor* labels = context.Input<Tensor>("Label");
58 59 60 61 62
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
    logit_grad->ShareDataWith<T>(*context.Input<Tensor>("Softmax"));

    const int class_num = logit_grad->dims()[1];
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    if (context.Attr<bool>("softLabel")) {
      auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
      auto logit_grad_mat = EigenMatrix<T>::From(*logit_grad);
      auto lbl_mat = EigenMatrix<T>::From(*labels);

      logit_grad_mat.device(context.GetEigenDevice<platform::CPUPlace>()) =
          logit_grad_mat *
              out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num)) -
          lbl_mat;
    } else {
      const int batch_size = logit_grad->dims()[0];
      const int* label_data = labels->data<int>();
      const T* out_grad_data = out_grad->data<T>();
      T* logit_grad_data = logit_grad->data<T>();

      for (int i = 0; i < batch_size; ++i) {
        int index = i * class_num + label_data[i];
        logit_grad_data[index] =
            (out_grad_data[i] * logit_grad_data[index] - 1.);
      }
83 84
    }
  }
C
caoying03 已提交
85 86 87 88
};

}  // namespace operators
}  // namespace paddle