tile_op.h 11.0 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <vector>

#include <boost/preprocessor/arithmetic/div.hpp>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

#define MAX_RANK_SUPPORTED 6

#define TILE_TEMPLATE(z, n, data) \
  case n + 1: {                   \
    Tile<n + 1>(context);         \
    break;                        \
  }
#define REP_TILE_TEMPLATE(n) BOOST_PP_REPEAT(n, TILE_TEMPLATE, ~)
#define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
#define TILE_GRAD_CASE(n)                                        \
  case n: {                                                      \
    TileBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
    break;                                                       \
  }
#define TILE_GRAD_TEMPLATE(z, n, data) BOOST_PP_IF(COND(n), TILE_GRAD_CASE(n), )
#define REP_TILE_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, TILE_GRAD_TEMPLATE, ~)

namespace paddle {
namespace operators {
inline std::vector<int> get_repeat_times(
    const framework::ExecutionContext& ctx) {
  if (ctx.HasInput("RepeatTimes")) {
    auto* repeat_tensor = ctx.Input<framework::LoDTensor>("RepeatTimes");
    auto* repeat_data = repeat_tensor->data<int>();
    framework::Tensor cpu_repeat_tensor;
    if (platform::is_gpu_place(repeat_tensor->place())) {
      TensorCopySync(*repeat_tensor, platform::CPUPlace(), &cpu_repeat_tensor);
      repeat_data = cpu_repeat_tensor.data<int>();
    }
    auto vec_repeat_times =
        std::vector<int>(repeat_data, repeat_data + repeat_tensor->numel());
    return vec_repeat_times;
  }

  auto list_repeat_times_tensor =
      ctx.MultiInput<framework::Tensor>("repeat_times_tensor");
  if (list_repeat_times_tensor.size() > 0) {
    // get tensor from
    std::vector<int> vec_repeat_times;
    for (size_t i = 0; i < list_repeat_times_tensor.size(); ++i) {
      auto tensor = list_repeat_times_tensor[i];
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*tensor, platform::CPUPlace(), &temp);
        vec_repeat_times.push_back(*temp.data<int32_t>());
      } else {
        vec_repeat_times.push_back(*tensor->data<int32_t>());
      }
    }
    return vec_repeat_times;
  } else {
    return ctx.Attr<std::vector<int>>("repeat_times");
  }
}

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using framework::To32BitIndex;

template <typename DeviceContext, typename T>
class TileKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto rank = context.Input<Tensor>("X")->dims().size();
    PADDLE_ENFORCE_GE(
        rank, 1, platform::errors::InvalidArgument(
                     "The rank of the input 'x' for tile op must be a positive "
                     "integer, but the value received is %d.",
                     rank));
    PADDLE_ENFORCE_LE(
        rank, MAX_RANK_SUPPORTED,
        platform::errors::InvalidArgument(
            "The rank of the input 'x' for tile op "
            "must be less than or equal to %d, but the value received is %d.",
            MAX_RANK_SUPPORTED, rank));
    auto repeat_times = get_repeat_times(context);
    int repeat_times_size = repeat_times.size();
    PADDLE_ENFORCE_GE(
        repeat_times_size, 1,
        platform::errors::InvalidArgument(
            "The number of elements of the input 'repeat_times' for tile "
            "op must be positive, but the value received is %d.",
            repeat_times_size));
    PADDLE_ENFORCE_LE(
        repeat_times_size, MAX_RANK_SUPPORTED,
        platform::errors::InvalidArgument(
            "The number of elements of the input 'repeat_times' for tile op "
            "must be less than or equal to %d, but the value received is %d.",
            MAX_RANK_SUPPORTED, repeat_times_size));
    rank = std::max(rank, repeat_times_size);
    switch (rank) { REP_TILE_TEMPLATE(MAX_RANK_SUPPORTED) }
  }

 protected:
  template <int Rank>
  void Tile(const framework::ExecutionContext& context) const {
    auto* in0 = context.Input<Tensor>("X");

    auto in_dims = in0->dims();
    auto repeat_times = get_repeat_times(context);
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      PADDLE_ENFORCE_GT(
          repeat_times[i], 0,
          platform::errors::InvalidArgument(
              "All elements of the input 'repeat_times' for tile op must "
              "be positive integers, but the value received is %d.",
              repeat_times[i]));
    }
    auto vec_in_dims = framework::vectorize<int>(in_dims);
    if (repeat_times.size() < vec_in_dims.size()) {
      int diff = vec_in_dims.size() - repeat_times.size();
      repeat_times.insert(repeat_times.begin(), diff, 1);
    } else {
      int diff = repeat_times.size() - vec_in_dims.size();
      vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
    }
    PADDLE_ENFORCE_EQ(
        repeat_times.size(), vec_in_dims.size(),
        platform::errors::InvalidArgument(
            "The rank (%d) of the input 'x' and the rank (%d) of the input "
            "'repeat_times' for tile op must match after promotion.",
            vec_in_dims.size(), repeat_times.size()));
    auto* out0 = context.Output<Tensor>("Out");
    Eigen::DSizes<int, Rank> bcast_dims;
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      bcast_dims[i] = repeat_times[i];
    }

    framework::DDim new_in_dims = framework::make_ddim(vec_in_dims);
    framework::DDim out_dims(new_in_dims);
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      out_dims[i] *= repeat_times[i];
    }

    out0->Resize(out_dims);
    auto x = EigenTensor<T, Rank>::From(*in0, new_in_dims);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0, out_dims);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    // use 32-bit index to speed up
    bool use_32bit_index = y.size() < Eigen::NumTraits<int>::highest();
    if (use_32bit_index) {
      To32BitIndex(y).device(place) = To32BitIndex(x).broadcast(bcast_dims);
    } else {
      y.device(place) = x.broadcast(bcast_dims);
    }
  }
};

template <typename DeviceContext, typename T>
class TileGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
L
Leo Chen 已提交
189
    auto* x = context.Input<Tensor>("X");
L
lilong12 已提交
190
    auto repeat_times = get_repeat_times(context);
L
Leo Chen 已提交
191
    auto x_dims = x->dims();
L
lilong12 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    auto vec_in_dims = framework::vectorize<int>(x_dims);
    if (repeat_times.size() < vec_in_dims.size()) {
      int diff = vec_in_dims.size() - repeat_times.size();
      repeat_times.insert(repeat_times.begin(), diff, 1);
    } else {
      int diff = repeat_times.size() - vec_in_dims.size();
      vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
    }
    // 1. reshape_dims_vec is the broadcast parameter.
    // 2. reduce_dims_vec is the dimension parameter to compute gradients. For
    //    each dimension expanded, the gradients should be summed to original
    //    size.
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      reduce_dims_vec.push_back(reshape_dims_vec.size());
      reshape_dims_vec.push_back(repeat_times[i]);
      reshape_dims_vec.push_back(vec_in_dims[i]);
    }

    int dims = reduce_dims_vec.size();

    bool just_copy = true;
    for (size_t i = 0; i < repeat_times.size(); i++) {
      if (repeat_times[i] != 1) {
        just_copy = false;
        break;
      }
    }
    // no need reduce, just copy
    if (just_copy) {
L
Leo Chen 已提交
223 224 225 226 227 228 229
      auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
      dx->mutable_data<T>(context.GetPlace());
      framework::TensorCopy(*dout, context.GetPlace(), context.device_context(),
                            dx);
      // TensorCopy may change the dims of dx
      dx->Resize(x_dims);
L
lilong12 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    } else {
      PADDLE_ENFORCE_GE(dims, 1,
                        platform::errors::InvalidArgument(
                            "Th rank of the input 'Out@GRAD' for tile_grad op "
                            " must be greater than or equal to 1, but "
                            "the value received is %d.",
                            dims));
      PADDLE_ENFORCE_LE(dims, MAX_RANK_SUPPORTED,
                        platform::errors::InvalidArgument(
                            "The rank of the input 'Out@GRAD' for tile_grad op "
                            "must be less than or equal "
                            "to %d, but the value received is %d.",
                            MAX_RANK_SUPPORTED, dims));
      switch (dims) { REP_TILE_GRAD_TEMPLATE(MAX_RANK_SUPPORTED) }
    }
  }

 protected:
  template <int Dims>
  void TileBackward(const framework::ExecutionContext& context,
                    const std::vector<int>& reshape_dims_vec,
                    const std::vector<int>& reduce_dims_vec) const {
    size_t reshape_size = reshape_dims_vec.size();
    size_t reduce_size = reduce_dims_vec.size();
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
    Eigen::DSizes<int, Dims * 2> reshape_dims;
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
    Eigen::DSizes<int, Dims> reduce_dims;
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
L
Leo Chen 已提交
266

L
lilong12 已提交
267 268 269 270 271 272 273 274 275 276 277
    auto out_grad = EigenVector<T>::Flatten(*in0);
    x_grad.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
        out_grad.reshape(reshape_dims)
            .sum(reduce_dims)
            .reshape(x_grad.dimensions());
  }
};

}  // namespace operators
}  // namespace paddle