imdb.py 4.8 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import re
import six
import string
import tarfile
import numpy as np
import collections

from paddle.io import Dataset
25
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

URL = 'https://dataset.bj.bcebos.com/imdb%2FaclImdb_v1.tar.gz'
MD5 = '7c2ac02c03563afcf9b574c7e56c153a'


class Imdb(Dataset):
    """
    Implementation of `IMDB <https://www.imdb.com/interfaces/>`_ dataset.

    Args:
        data_file(str): path to data tar file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train' 'test' mode. Default 'train'.
        cutoff(int): cutoff number for building word dictionary. Default 150.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True

    Returns:
        Dataset: instance of IMDB dataset

    Examples:

        .. code-block:: python

50 51
            import paddle
            from paddle.text.datasets import Imdb
K
Kaipeng Deng 已提交
52

53 54 55
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
56

57 58
                def forward(self, doc, label):
                    return paddle.sum(doc), label
K
Kaipeng Deng 已提交
59 60


61
            imdb = Imdb(mode='train')
K
Kaipeng Deng 已提交
62

63 64 65 66
            for i in range(10):
                doc, label = imdb[i]
                doc = paddle.to_tensor(doc)
                label = paddle.to_tensor(label)
K
Kaipeng Deng 已提交
67

68 69 70
                model = SimpleNet()
                image, label = model(doc, label)
                print(doc.numpy().shape, label.numpy().shape)
K
Kaipeng Deng 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    """

    def __init__(self, data_file=None, mode='train', cutoff=150, download=True):
        assert mode.lower() in ['train', 'test'], \
            "mode should be 'train', 'test', but got {}".format(mode)
        self.mode = mode.lower()

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(data_file, URL, MD5,
                                                        'imdb', download)

        # Build a word dictionary from the corpus
        self.word_idx = self._build_work_dict(cutoff)

        # read dataset into memory
        self._load_anno()

    def _build_work_dict(self, cutoff):
        word_freq = collections.defaultdict(int)
93
        pattern = re.compile(r"aclImdb/((train)|(test))/((pos)|(neg))/.*\.txt$")
K
Kaipeng Deng 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        for doc in self._tokenize(pattern):
            for word in doc:
                word_freq[word] += 1

        # Not sure if we should prune less-frequent words here.
        word_freq = [x for x in six.iteritems(word_freq) if x[1] > cutoff]

        dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
        words, _ = list(zip(*dictionary))
        word_idx = dict(list(zip(words, six.moves.range(len(words)))))
        word_idx['<unk>'] = len(words)
        return word_idx

    def _tokenize(self, pattern):
        data = []
        with tarfile.open(self.data_file) as tarf:
            tf = tarf.next()
            while tf != None:
                if bool(pattern.match(tf.name)):
                    # newline and punctuations removal and ad-hoc tokenization.
                    data.append(
                        tarf.extractfile(tf).read().rstrip(six.b("\n\r"))
                        .translate(None, six.b(string.punctuation)).lower(
                        ).split())
                tf = tarf.next()

        return data

    def _load_anno(self):
123 124
        pos_pattern = re.compile(r"aclImdb/{}/pos/.*\.txt$".format(self.mode))
        neg_pattern = re.compile(r"aclImdb/{}/neg/.*\.txt$".format(self.mode))
K
Kaipeng Deng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

        UNK = self.word_idx['<unk>']

        self.docs = []
        self.labels = []
        for doc in self._tokenize(pos_pattern):
            self.docs.append([self.word_idx.get(w, UNK) for w in doc])
            self.labels.append(0)
        for doc in self._tokenize(neg_pattern):
            self.docs.append([self.word_idx.get(w, UNK) for w in doc])
            self.labels.append(1)

    def __getitem__(self, idx):
        return (np.array(self.docs[idx]), np.array([self.labels[idx]]))

    def __len__(self):
        return len(self.docs)