fleet_meta_optimizer_base.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16 17 18 19 20 21 22 23 24 25 26 27 28
import unittest
import paddle
from paddle import fluid
import os
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker


class TestFleetMetaOptimizer(unittest.TestCase):
    def setUp(self):
        os.environ["PADDLE_TRAINER_ID"] = "1"
        os.environ[
            "PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
        self._debug = False

    def debug_program(self, main_prog, startup_prog):
        if not self._debug: return

        main_prog_ops = main_prog.global_block().ops
        startup_prog_ops = startup_prog.global_block().ops

        main_prog_op_types = [op.type for op in main_prog_ops]
        startup_prog_op_types = [op.type for op in startup_prog_ops]

        print("=== debug program and ops in func [{}] ==="
              .format(inspect.stack()[1].function))
        print(main_prog)
        print(main_prog_op_types)
        print(startup_prog)
        print(startup_prog_op_types)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    def net(self, main_prog, startup_prog):
        with fluid.program_guard(main_prog, startup_prog):
            with fluid.unique_name.guard():
                role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                input_x = paddle.fluid.layers.data(
                    name="x", shape=[32], dtype='float32')
                input_y = paddle.fluid.layers.data(
                    name="y", shape=[1], dtype='int64')

                fc_1 = paddle.fluid.layers.fc(input=input_x,
                                              size=64,
                                              act='tanh')
                fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
                prediction = paddle.fluid.layers.fc(input=[fc_2],
                                                    size=2,
                                                    act='softmax')
                cost = paddle.fluid.layers.cross_entropy(
                    input=prediction, label=input_y)
                avg_cost = paddle.fluid.layers.mean(x=cost)

                strategy = paddle.distributed.fleet.DistributedStrategy()
        return avg_cost, strategy

J
JZ-LIANG 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def pp_net(self, main_prog, startup_prog, pp_degree=2):
        def fc_block(input_x):
            fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
            fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
            fc_3 = paddle.fluid.layers.fc(input=fc_2, size=64, act='tanh')
            return fc_3

        with fluid.program_guard(main_prog, startup_prog):
            with fluid.unique_name.guard():
                role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                with fluid.device_guard("gpu:0"):
                    input_x = paddle.fluid.layers.data(
                        name="x", shape=[32], dtype='float32')
                    input_y = paddle.fluid.layers.data(
                        name="y", shape=[1], dtype='int64')

                for stage_idx in range(pp_degree):
                    with fluid.device_guard("gpu:" + str(stage_idx)):
                        input_x = fc_block(input_x)

                with fluid.device_guard("gpu:" + str(pp_degree - 1)):
                    prediction = paddle.fluid.layers.fc(input=[input_x],
                                                        size=2,
                                                        act='softmax')
                    cost = paddle.fluid.layers.cross_entropy(
                        input=prediction, label=input_y)
                    avg_cost = paddle.fluid.layers.mean(x=cost)

        strategy = paddle.distributed.fleet.DistributedStrategy()
        return avg_cost, strategy

103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def boundary_net(self, main_prog, startup_prog):
        with fluid.program_guard(main_prog, startup_prog):
            fleet.init(is_collective=True)
            x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
            with paddle.static.device_guard('gpu:0'):
                linear = fluid.Linear(4, 8, bias_attr=False)
                out = linear(x)
            with paddle.static.device_guard('gpu:1'):
                linear = fluid.Linear(8, 5, bias_attr=False)
                out = linear(out)
                avg_cost = paddle.mean(out)
            strategy = fleet.DistributedStrategy()
        return avg_cost, strategy

117 118 119 120 121
    def optimizer(self,
                  loss,
                  strategy,
                  train_prog,
                  startup_prog,
122 123 124
                  name='momentum',
                  regularization=None,
                  grad_clip=None):
125 126 127 128
        with fluid.program_guard(train_prog, startup_prog):
            with fluid.unique_name.guard():
                if name == 'momentum':
                    optimizer = paddle.fluid.optimizer.Momentum(
129 130 131 132
                        learning_rate=0.01,
                        momentum=0.9,
                        regularization=regularization,
                        grad_clip=grad_clip)
133
                elif name == 'adam':
134 135 136 137
                    optimizer = paddle.fluid.optimizer.Adam(
                        learning_rate=0.01,
                        regularization=regularization,
                        grad_clip=grad_clip)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                optimizer = fleet.distributed_optimizer(
                    optimizer, strategy=strategy)
                optimizer.minimize(loss)

    def set_strategy(self, strategy, name):
        if name == 'amp':
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "decr_every_n_nan_or_inf": 2,
                "incr_every_n_steps": 1000,
                "incr_ratio": 2.0,
                "use_dynamic_loss_scaling": True,
                "decr_ratio": 0.5,
                "custom_white_list": ['softmax'],
                "custom_black_list": ['tanh'],
            }
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        elif name == 'pure_fp16':
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "decr_every_n_nan_or_inf": 2,
                "incr_every_n_steps": 1000,
                "incr_ratio": 2.0,
                "use_dynamic_loss_scaling": True,
                "decr_ratio": 0.5,
                "custom_white_list": ['softmax'],
                "custom_black_list": ['tanh'],
                "use_pure_fp16": True,
                "use_fp16_guard": False,
            }

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        elif name == 'dgc':
            strategy.dgc = True
            strategy.dgc_configs = {
                "rampup_begin_step": 128,
                "rampup_step": 100,
                "sparsity": [0.996, 0.999]
            }
        elif name == 'recompute':
            strategy.recompute = True
            strategy.recompute_configs = {
                "checkpoints": ["fc_0.tmp_2", "fc_1.tmp_2"]
            }
        elif name == 'lars':
            strategy.lars = True
            strategy.lars_configs = {
                "lars_coeff": 0.001,
                "lars_weight_decay": 0.0005,
                "epsilon": 0,
                "exclude_from_weight_decay": ["batch_norm", ".b"],
            }
        elif name == 'lamb':
            strategy.lamb = True
            strategy.lamb_configs = {
                'lamb_weight_decay': 0.01,
                'exclude_from_weight_decay': [],
            }
        elif name == 'localsgd':
            strategy.localsgd = True
            strategy.localsgd_configs = {
                'k_steps': 1,
                'begin_step': 1,
            }
        elif name == 'adaptive_localsgd':
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {
                'init_k_steps': 1,
                'begin_step': 1,
            }
208 209 210
        elif name == "gradient_merge":
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 2, "avg": True}
211 212
        elif name == "sharding":
            strategy.sharding = True
213 214 215 216 217
            strategy.sharding_configs = {
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 0.2,
                "sharding_degree": 2,
            }
J
JZ-LIANG 已提交
218 219 220 221 222 223 224
        elif name == "recompute-offload":
            strategy.recompute = True
            strategy.recompute_configs = {
                "checkpoints": ["fc_0.tmp_2", "fc_1.tmp_2"],
                "enable_offload": True,
                "checkpoint_shape": [256]
            }
225 226 227 228 229 230 231
        elif name == "pipeline":
            strategy.pipeline = True
            strategy.pipeline_configs = {
                "schedule_mode": "1F1B",
                "micro_batch_size": 2,
                "accumulate_steps": 4,
            }
232 233
        else:
            raise NotImplementedError()