nan_inf_utils_detail.cu 7.1 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"

#include <algorithm>
#include <unordered_map>
#include <utility>
#include <vector>

namespace paddle {
namespace framework {
namespace details {

static std::once_flag init_multi_gpu_op_var_map_flag;

// lazy init
static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>&
multi_op_var2gpu_str() {
  static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>
      _multi_op_var2gpu_str;
  return _multi_op_var2gpu_str;
}

static std::vector<std::mutex>& multi_op_var2gpu_str_mutex() {
  static std::vector<std::mutex> _multi_op_var2gpu_str_mutex;
  return _multi_op_var2gpu_str_mutex;
}

static void InitMultiGPUOpVarMap() {
  int dev_count = platform::GetCUDADeviceCount();
  PADDLE_ENFORCE_GT(dev_count, 0,
                    platform::errors::NotFound(
                        "cuda device must > 0, now dev_count=%d", dev_count));

  // https://stackoverflow.com/questions/16465633/how-can-i-use-something-like-stdvectorstdmutex
  std::vector<std::unordered_map<std::string, memory::AllocationPtr>> tmp_multi(
      dev_count);
  std::vector<std::mutex> tmp_multi_mutex(dev_count);

  multi_op_var2gpu_str().swap(tmp_multi);
  multi_op_var2gpu_str_mutex().swap(tmp_multi_mutex);
}

template <typename T>
__device__ __forceinline__ void PrintNanInfKernel(const T* value,
                                                  const size_t numel,
                                                  int print_num,
                                                  char* debug_info) {
  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;

  __shared__ unsigned int nan_count, inf_count, num_count;
  if (threadIdx.x == 0) nan_count = inf_count = num_count = 0;
  __syncthreads;

  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    unsigned int count = 0;
    if (isnan(value[i])) {
      count = atomicAdd(&nan_count, 1);
    } else if (isinf(value[i])) {
      count = atomicAdd(&inf_count, 1);
    } else {
      count = atomicAdd(&num_count, 1);
    }
    // for cuda, print in every block
    if (count < print_num) {
      printf("numel:%lu idx:%lu value:%f\n", static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i), static_cast<float>(value[i]));
    }
  }
  __syncthreads;

  if (true && threadIdx.x == 0) {
    printf("In block %d, there has %u,%u,%u nan,inf,num\n", blockIdx.x,
           nan_count, inf_count, num_count);
    PADDLE_ENFORCE(false, "===ERROR: in %s find nan or inf===", debug_info);
  }
}

// Resnet 2gpus speed test, no check 270 images/s, this check 229 images/s
template <typename T>
__global__ void CheckNanInfKernel(const T* value, const size_t numel,
                                  int print_num, char* debug_info) {
  /// step 1, judge wheater has nan or inf
  __shared__ volatile int has_nan_inf;
  if (threadIdx.x == 0) has_nan_inf = false;
  __syncthreads();

  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;
  T sum = static_cast<T>(0.0);
  // Todo(wangxi). simd speed up
  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    sum += (value[i] - value[i]);
  }

  if (isnan(sum) || isinf(sum)) has_nan_inf = true;
  __syncthreads();

  /// Note. different blocks may behave differently
  if (!has_nan_inf) return;

  PrintNanInfKernel(value, numel, print_num, debug_info);
}

template <>
template <typename T>
void TensorCheckerVisitor<platform::CUDADeviceContext>::apply(
    typename std::enable_if<std::is_floating_point<T>::value>::type*) const {
  int print_num = 3;

  auto* dev_ctx = reinterpret_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(tensor_.place()));
  int dev_id = boost::get<platform::CUDAPlace>(tensor_.place()).device;
  PADDLE_ENFORCE_EQ(
      (dev_id >= 0 && dev_id < multi_op_var2gpu_str_mutex().size()), true,
      platform::errors::OutOfRange("GPU dev_id must >=0 and < dev_count=%d",
                                   multi_op_var2gpu_str_mutex().size()));

  std::string op_var = "[op=" + op_type_ + "] [tensor=" + var_name_ + "]";
  char* gpu_str_ptr = NULL;

  {
    auto& op_var2gpu_str_mutex = multi_op_var2gpu_str_mutex().at(dev_id);
    auto& op_var2gpu_str = multi_op_var2gpu_str().at(dev_id);

    std::lock_guard<std::mutex> guard(op_var2gpu_str_mutex);
    if (op_var2gpu_str.find(op_var) == op_var2gpu_str.end()) {  // insert
      auto gpu_str_tensor =
          paddle::memory::Alloc(*dev_ctx, op_var.length() + 1);
      gpu_str_ptr = reinterpret_cast<char*>(gpu_str_tensor->ptr());

      op_var2gpu_str.emplace(op_var, std::move(gpu_str_tensor));

      auto iter = op_var2gpu_str.find(op_var);
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(), true,
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should successed insert into "
                            "op_var2gpu_str, but now failed",
                            op_var));

      PADDLE_ENFORCE_CUDA_SUCCESS(
          cudaMemcpyAsync(gpu_str_ptr, iter->first.c_str(), op_var.length() + 1,
155
                          cudaMemcpyHostToDevice, dev_ctx->stream()));
W
WangXi 已提交
156 157 158 159 160 161 162 163 164 165 166 167
    } else {  // get
      auto iter = op_var2gpu_str.find(op_var);
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(), true,
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should be in the op_var2gpu_str, but "
                            "now can't find it",
                            op_var));
      gpu_str_ptr = reinterpret_cast<char*>(iter->second->ptr());
    }
  }

  const size_t threads = 1024;
168 169 170
  size_t blocks =
      std::min(static_cast<size_t>(128),
               static_cast<size_t>((tensor_.numel() + threads - 1) / threads));
W
WangXi 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  CheckNanInfKernel<<<blocks, threads, 0, dev_ctx->stream()>>>(
      tensor_.data<T>(), tensor_.numel(), print_num, gpu_str_ptr);
}

template <>
void tensor_check<platform::CUDADeviceContext>(const std::string& op_type,
                                               const std::string& var_name,
                                               const framework::Tensor& tensor,
                                               const platform::Place& place) {
  std::call_once(init_multi_gpu_op_var_map_flag, InitMultiGPUOpVarMap);

  TensorCheckerVisitor<platform::CUDADeviceContext> vistor(op_type, var_name,
                                                           tensor, place);
  VisitDataType(tensor.type(), vistor);
}

}  // namespace details
}  // namespace framework
}  // namespace paddle