conv_op.cc 23.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
28 29 30 31

namespace paddle {
namespace operators {

C
chengduoZH 已提交
32
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
34
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
36
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
37
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
38
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
39 40 41

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
42

C
chengduoZH 已提交
43 44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
47

C
chengduoZH 已提交
48
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
49 50 51
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
52 53 54 55 56 57 58 59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
61

Y
Yang Yu 已提交
62
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
63
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
64
                    "channels * groups.");
C
chengduoZH 已提交
65
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
66
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
67 68 69
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
70
  for (size_t i = 0; i < strides.size(); ++i) {
T
tink2123 已提交
71
    if ((!ctx->IsRuntime()) &&
T
tink2123 已提交
72
        (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
73 74 75 76 77 78
      output_shape.push_back(-1);
    } else {
      output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                            dilations[i], paddings[i],
                                            strides[i]));
    }
C
chengduoZH 已提交
79
  }
80
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
81
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
82 83
}

84 85
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
86 87
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
88
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
89
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
90
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
91
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
92 93
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
94
#ifdef PADDLE_WITH_CUDA
95
  if (platform::CanCUDNNBeUsed(ctx)) {
96
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
97 98
  }
#endif
99
#ifdef PADDLE_WITH_MKLDNN
100
  if (library == framework::LibraryType::kPlain &&
101
      platform::CanMKLDNNBeUsed(ctx)) {
102
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
103
    layout = framework::DataLayout::kMKLDNN;
104 105 106 107 108
    customized_type_value =
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType)
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
109
  }
110
#endif
111

112 113 114 115 116 117
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
118
  if (input_data_type == framework::proto::VarType::FP16) {
119
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
120 121 122
                      "float16 can only be used when CUDNN is used");
  }

123 124 125 126 127 128 129 130 131 132 133 134 135 136
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
137 138
}

Y
Yu Yang 已提交
139
void Conv2DOpMaker::Make() {
140 141 142 143
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
144 145
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
146 147 148 149
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
150
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
151
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
152 153
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
154 155
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
156
           "input image channels divided by the groups.");
157 158 159 160 161
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
162 163 164
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
165
           "Used with fuse_residual_connection fusion.")
166
      .AsDispensable();
Y
Yihua Xu 已提交
167 168 169
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
170 171 172 173
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
174
      .SetDefault({1, 1});
C
chengduoZH 已提交
175 176 177 178
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
179 180 181
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
182
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
183 184 185 186
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
187
      .SetDefault(1);
C
chengduoZH 已提交
188
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
189 190
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
191
                            "convolution operator.")
C
chengduoZH 已提交
192
      .SetDefault({1, 1});
193 194 195 196
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
197 198 199
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
200 201 202
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
203 204 205 206 207 208
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
209 210
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
211
  AddAttr<bool>("fuse_residual_connection",
212
                "(bool, default false) Only used in mkldnn kernel. Used "
213 214
                "whenever convolution output is as an input to residual "
                "connection.")
215
      .SetDefault(false);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
252 253
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
254
                "convolution, whether enable exhaustive search "
255 256
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
257
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
258 259
Convolution Operator.

C
chengduoZH 已提交
260
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
261
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
262
parameters is checked in the infer-shape.
C
chengduoZH 已提交
263
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
264
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
265 266 267 268 269 270
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
271 272 273 274
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
275 276
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
277
  Output:
C
chengduoZH 已提交
278 279 280 281 282 283
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
284
)DOC");
Q
qingqing01 已提交
285
  Apply();
C
chengduoZH 已提交
286 287
}

Y
Yu Yang 已提交
288
void Conv3DOpMaker::Make() {
289 290 291 292
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
293 294
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
295
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
296
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
297 298 299
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
300
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
301
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
302 303
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
304 305 306
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
307
           "input image channels divided by the groups.");
308 309 310 311 312
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
313 314 315
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
316 317 318 319
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
320
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
321 322 323 324
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
325 326 327
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
328
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
329 330 331 332
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
333
      .SetDefault(1);
C
chengduoZH 已提交
334
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
335 336
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
337
                            "convolution operator.")
C
chengduoZH 已提交
338
      .SetDefault({1, 1, 1});
339 340 341 342
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
343 344 345
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
346 347 348 349 350 351 352
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
353 354 355 356 357 358 359
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
360 361 362
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
363 364 365 366 367 368 369 370
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
371 372
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
373
                "convolution, whether enable exhaustive search "
374 375
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
376
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
377 378
Convolution3D Operator.

C
chengduoZH 已提交
379
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
380
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
381
parameters is checked in the infer-shape.
C
chengduoZH 已提交
382
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
383
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
384 385 386 387 388 389
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
390 391 392 393
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
394 395
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
396
  Output:
C
chengduoZH 已提交
397 398 399 400 401 402 403
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
404
)DOC");
Q
qingqing01 已提交
405
  Apply();
C
chengduoZH 已提交
406 407
}

C
chengduoZH 已提交
408 409 410 411 412 413 414 415 416 417 418
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

419 420
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
421 422
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
423
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
424 425 426 427
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
428
#ifdef PADDLE_WITH_CUDA
429 430
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
431 432
  }
#endif
433 434 435 436
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
437
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
438
    customized_type_value = kConvMKLDNNFP32;
439
  }
440
#endif
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
461 462
}

S
sneaxiy 已提交
463
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
464 465 466 467 468
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
469
    op->SetType(this->ForwardOpType() + "_grad");
470 471 472 473 474 475 476 477 478 479 480 481
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
482 483 484 485 486
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
487

S
sneaxiy 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
505 506 507
  }
};

C
chengduoZH 已提交
508 509 510 511
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
512
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
513
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
514
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
515 516

// depthwise convolution op
Y
Yang Yang 已提交
517
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
518
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
519
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
520

Y
Yang Yang 已提交
521
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
522
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
523
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
524

525 526
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
527
REGISTER_OP_CPU_KERNEL(
528
    depthwise_conv2d,
X
xzl 已提交
529 530 531 532
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
533
    depthwise_conv2d_grad,
X
xzl 已提交
534 535
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
536

C
chengduoZH 已提交
537
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
538 539 540 541 542 543
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
544 545

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
546 547 548 549 550 551
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);