elementwise_max_op.cc 3.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
wip  
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
W
wanghuancoder 已提交
16

17
#include <string>
W
wanghuancoder 已提交
18

W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20

W
wanghuancoder 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

34 35 36 37 38 39 40
namespace paddle {
namespace operators {

class ElementwiseMaxOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Max"; }
  std::string GetEquation() const override { return "Out = max(X, Y)"; }
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

  void AddInputX() override {
    AddInput(
        "X",
        "(Variable), The first tensor holding the elements to be compared.");
  }

  void AddInputY() override {
    AddInput(
        "Y",
        "(Variable), The second tensor holding the elements to be compared.");
  }

  std::string GetOpFuntionality() const override {
    return "Compare two tensors and returns a new tensor containing the "
           "element-wise maxima.";
  }
58 59
};

H
hong 已提交
60 61
template <typename T>
class ElementwiseMaxGradOpMaker : public framework::SingleGradOpMaker<T> {
62
 public:
H
hong 已提交
63
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
64 65

 protected:
66
  void Apply(GradOpPtr<T> op) const override {
67
    op->SetType("elementwise_max_grad");
H
hong 已提交
68 69 70 71 72 73
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
74 75 76 77 78 79
  }
};

}  // namespace operators
}  // namespace paddle

F
wip  
fengjiayi 已提交
80
namespace ops = paddle::operators;
81 82 83

REGISTER_OPERATOR(elementwise_max, ops::ElementwiseOp,
                  ops::ElementwiseMaxOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
84 85
                  ops::ElementwiseMaxGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseMaxGradOpMaker<paddle::imperative::OpBase>);
86 87 88

REGISTER_OPERATOR(elementwise_max_grad, ops::ElementwiseOpGrad);

F
wip  
fengjiayi 已提交
89 90 91 92 93 94 95 96 97 98 99
REGISTER_OP_CPU_KERNEL(
    elementwise_max,
    ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    elementwise_max_grad,
    ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int>,
F
fengjiayi 已提交
100
    ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int64_t>);