layer_norm_op.cu 8.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/elementwise_op_function.h"
#include "paddle/operators/layer_norm_op.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

namespace {
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a / (sqrt(b) + epsilon_);
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

template <typename T>
struct AddFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
};

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};
}  // namespace

template <typename DeviceContext, typename T>
class LayerNormCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *bias = ctx.Input<Tensor>("Bias");
    auto x = *ctx.Input<Tensor>("X");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    const auto &x_dims = x.dims();

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);

    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
    y->Resize(matrix_shape);

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    math::RowwiseMean<DeviceContext, T> row_mean;

    // functor-> get mean
    row_mean(dev_ctx, x, mean);

    // functor-> get variance
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), y);
    row_mean(dev_ctx, *y, var);

    // functor-> get norm_out
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), y);
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
        ctx, y, var, /*axis*/ 0, DivAndSqrtFunctor<T>(static_cast<T>(epsilon)),
        y);

    framework::DDim scale_shape({right});
    if (scale) {
      Tensor scale_matrix = *scale;
      scale_matrix.Resize(scale_shape);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, y, &scale_matrix, /*axis*/ 1, MulFunctor<T>(), y);
    }
    if (bias) {
      Tensor bias_matrix = *bias;
      bias_matrix.Resize(scale_shape);
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
          ctx, y, &bias_matrix, /*axis*/ 1, AddFunctor<T>(), y);
    }
    y->Resize(x_dims);
  }
};

template <typename DeviceContext, typename T>
class LayerNormCUDAGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
    auto mean = *ctx.Input<Tensor>("Mean");
    auto var = *ctx.Input<Tensor>("Variance");
    auto scale = *ctx.Input<Tensor>("Scale");
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto &x_dims = x.dims();
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    math::ColwiseSum<DeviceContext, T> colwise_sum;

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());
      temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());

      // get x_norm
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &x, &mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

      auto &dev_ctx = ctx.template device_context<DeviceContext>();
      math::RowwiseMean<DeviceContext, T> row_mean;

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &scale, /*axis*/ 1, MulFunctor<T>(), &temp);
        framework::Copy(temp, ctx.GetPlace(), ctx.device_context(), d_x);

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);

      } else {
        // dy_dx
        framework::Copy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, d_x, &temp_norm, /*axis*/ 0, SubFunctor<T>(), d_x);

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, d_x, &var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
    ops::LayerNormCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormCUDAKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
    ops::LayerNormCUDAGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormCUDAGradKernel<paddle::platform::CUDADeviceContext, double>);