downpour_worker.cc 16.5 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17 18 19 20 21
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

22
void DownpourWorker::Initialize(const TrainerDesc& desc) {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  param_ = desc.downpour_param();
  for (size_t i = 0; i < param_.sparse_table_size(); ++i) {
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
    for (size_t j = 0; j < table.sparse_key_name_size(); ++j) {
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
    for (size_t j = 0; j < table.sparse_value_name_size(); ++j) {
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
    for (size_t j = 0; j < table.sparse_grad_name_size(); ++j) {
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
40
    label_var_name_[table_id] = table.label_var_name();
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  }

  for (size_t i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
    for (size_t j = 0; j < table.dense_value_name_size(); ++j) {
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (size_t j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
  for (size_t i = 0; i < param_.skip_ops_size(); ++i) {
    skip_ops_[i] = param_.skip_ops(i);
  }
60

61 62 63
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

64
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
65
  fetch_config_ = desc.fetch_config();
66 67
}

68
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
69
  uint64_t table_id = static_cast<uint64_t>(
70
      param_.program_config(0).pull_sparse_table_id(table_idx));
71

H
heqiaozhi 已提交
72 73 74 75 76 77 78
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
79 80 81
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
82
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
83 84 85 86 87
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

  int global_index = 0;
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
88 89
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
90 91 92 93 94
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int fea_idx = 0;
    // tensor->lod()[0].size() == batch_size + 1
95 96
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
97 98 99 100
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
101 102
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
103 104 105 106 107 108 109 110
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
111
  uint64_t table_id = static_cast<uint64_t>(
112
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
113 114 115 116 117 118 119 120

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
121 122 123 124

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
125
  std::vector<float> init_value(table.fea_dim());
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
        memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
               sizeof(float) * table.emb_dim());
        continue;
      }
      memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * table.emb_dim());
      fea_idx++;
    }
  }
}

154 155 156
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
188
  uint64_t total_inst = 0;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
212
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
213
      timeline.Start();
214 215 216
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
217
      total_time += timeline.ElapsedSec();
218 219 220 221
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
222
      total_time += timeline.ElapsedSec();
223 224 225 226 227 228 229 230 231 232 233 234 235 236
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
237
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
238
        op->Run(*thread_scope_, place_);
239
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
240 241 242 243 244 245
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

246 247 248 249 250 251 252 253 254 255 256
    if (need_to_push_sparse_) {
      for (size_t i = 0;
           i < param_.program_config(0).push_sparse_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
257
        }
258 259 260 261 262 263 264 265
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
            &feature_grads_[tid], &push_sparse_status_);
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
266
      }
267 268 269
    }

    if (need_to_push_dense_) {
270
      timeline.Start();
271 272 273 274 275 276 277
      for (size_t i = 0;
           i < param_.program_config(0).push_dense_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }
278
      timeline.Pause();
279
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
280
      total_time += timeline.ElapsedSec();
281 282 283 284 285 286 287 288 289
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
290 291
      }

292 293
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
294 295 296
      }
    }

297
    if (need_to_push_sparse_) {
298 299 300
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
301 302 303 304 305 306
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
307

308 309 310
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
311

312 313 314
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
315 316 317
    }

    if (need_to_push_dense_) {
318 319 320 321 322 323
      for (size_t i = 0;
           i < param_.program_config(0).push_dense_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
324 325
    }

D
dongdaxiang 已提交
326
    PrintFetchVars();
327
    thread_scope_->DropKids();
D
dongdaxiang 已提交
328
    total_inst += cur_batch;
329 330 331 332 333 334 335 336 337 338 339
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
340 341 342 343 344 345 346 347 348 349
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
350
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
351 352
      }
    }
D
dongdaxiang 已提交
353
    timeline.Start();
354
  }
355 356
}

357
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
358
  VLOG(3) << "Begin to train files";
359
  platform::SetNumThreads(1);
360
  device_reader_->Start();
361 362
  int batch_cnt = 0;
  int cur_batch;
363
  while ((cur_batch = device_reader_->Next()) > 0) {
364
    // pull sparse here
H
heqiaozhi 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
379 380 381
      CollectLabelInfo(i);
      FillSparseValue(i);
    }
D
dongdaxiang 已提交
382
    VLOG(3) << "fill sparse value for all sparse table done.";
383 384 385

    // do computation here
    for (auto& op : ops_) {
386 387 388 389 390 391 392 393 394 395
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
396 397
    }

398 399 400 401 402 403 404 405 406 407 408 409
    if (need_to_push_sparse_) {
      // push gradients here
      for (size_t i = 0;
           i < param_.program_config(0).push_sparse_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
410
        }
411 412 413 414
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
            &feature_grads_[tid], &push_sparse_status_);
H
heqiaozhi 已提交
415
      }
416 417
    }

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    if (need_to_push_dense_) {
      for (size_t i = 0;
           i < param_.program_config(0).push_dense_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }

      VLOG(3) << "push dense gradient done.";
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
433

434 435 436 437 438
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
439 440
      }

441 442 443
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
444 445
    }

446 447 448 449 450 451 452 453 454 455
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
456 457
      }

458 459 460
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
461 462
    }

463 464 465 466 467 468 469
    if (need_to_push_dense_) {
      for (size_t i = 0;
           i < param_.program_config(0).push_dense_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
470
    }
471

D
dongdaxiang 已提交
472
    PrintFetchVars();
473 474 475 476 477 478 479
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle