broadcast_op_handle_test.h 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <memory>
18
#include <string>
19
#include <unordered_map>
20 21 22 23 24 25 26 27 28 29
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
namespace details {

W
wanghuancoder 已提交
30 31 32
struct DummyVarHandle;
struct VarHandle;

33 34 35 36 37 38 39 40 41 42 43
namespace f = paddle::framework;
namespace p = paddle::platform;

// test data amount
const f::DDim kDims = {20, 20};

struct TestBroadcastOpHandle {
  std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
  std::vector<Scope*> local_scopes_;
  std::vector<Scope*> param_scopes_;
  Scope g_scope_;
X
Xin Pan 已提交
44 45 46
  OpHandleBase* op_handle_;
  std::vector<VarHandleBase*> vars_;
  std::vector<std::unique_ptr<ir::Node>> nodes_;
47 48
  std::vector<p::Place> place_list_;
  bool use_gpu_;
49
#if defined(PADDLE_WITH_NCCL)
50 51 52 53 54 55 56
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif

  void WaitAll() {
    for (size_t j = 0; j < ctxs_.size(); ++j) {
      ctxs_[j]->Wait();
    }
57
#if defined(PADDLE_WITH_NCCL)
58 59 60 61 62 63 64 65 66
    if (nccl_ctxs_) {
      nccl_ctxs_->WaitAll();
    }
#endif
  }

  void InitCtxOnGpu(bool use_gpu) {
    use_gpu_ = use_gpu;
    if (use_gpu_) {
67
#if defined(PADDLE_WITH_NCCL)
68 69 70 71 72 73 74 75 76 77 78 79 80 81
      int count = p::GetCUDADeviceCount();
      if (count <= 1) {
        LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
                        "device count is "
                     << count;
        exit(0);
      }
      for (int i = 0; i < count; ++i) {
        auto p = p::CUDAPlace(i);
        place_list_.push_back(p);
        ctxs_.emplace_back(new p::CUDADeviceContext(p));
      }
      nccl_ctxs_.reset(new platform::NCCLContextMap(place_list_));
#else
82 83
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with NCLL."));
84 85 86 87 88 89 90 91
#endif
    } else {
      int count = 8;
      for (int i = 0; i < count; ++i) {
        auto p = p::CPUPlace();
        place_list_.push_back(p);
        ctxs_.emplace_back(new p::CPUDeviceContext(p));
      }
92
#if defined(PADDLE_WITH_NCCL)
93 94 95 96 97 98
      nccl_ctxs_.reset(nullptr);
#endif
    }
  }

  void InitBroadcastOp(size_t input_scope_idx) {
X
Xin Pan 已提交
99
    nodes_.clear();
100
    std::unordered_map<Scope*, Scope*> scope_map;
101 102 103 104 105
    for (size_t j = 0; j < place_list_.size(); ++j) {
      local_scopes_.push_back(&(g_scope_.NewScope()));
      Scope& local_scope = local_scopes_.back()->NewScope();
      local_scope.Var("out");
      param_scopes_.emplace_back(&local_scope);
106
      scope_map.emplace(local_scopes_.back(), param_scopes_.back());
107 108 109
    }
    param_scopes_[input_scope_idx]->Var("input");

X
Xin Pan 已提交
110 111
    nodes_.emplace_back(
        ir::CreateNodeForTest("node0", ir::Node::Type::kOperation));
112
    if (use_gpu_) {
113
#if defined(PADDLE_WITH_NCCL)
X
Xin Pan 已提交
114 115
      op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
                                         place_list_, nccl_ctxs_.get());
116
#else
117 118
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with NCLL."));
119 120
#endif
    } else {
121
#if defined(PADDLE_WITH_NCCL)
X
Xin Pan 已提交
122 123
      op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
                                         place_list_, nccl_ctxs_.get());
124
#else
X
Xin Pan 已提交
125 126
      op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
                                         place_list_);
127 128 129
#endif
    }

130 131
    op_handle_->SetLocalExecScopes(scope_map);

X
Xin Pan 已提交
132 133 134 135
    nodes_.emplace_back(
        ir::CreateNodeForTest("node1", ir::Node::Type::kVariable));
    auto* in_var_handle = new VarHandle(nodes_.back().get(), 1, input_scope_idx,
                                        "input", place_list_[input_scope_idx]);
136 137 138 139 140
    vars_.emplace_back(in_var_handle);
    op_handle_->AddInput(in_var_handle);

    // add dummy var

X
Xin Pan 已提交
141 142 143
    nodes_.emplace_back(
        ir::CreateNodeForTest("node2", ir::Node::Type::kVariable));
    vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
144
    DummyVarHandle* dummy_var_handle =
X
Xin Pan 已提交
145
        static_cast<DummyVarHandle*>(vars_.back());
146 147 148 149 150 151 152
    dummy_var_handle->ClearGeneratedOp();
    op_handle_->AddInput(dummy_var_handle);

    for (size_t j = 0; j < place_list_.size(); ++j) {
      if (!use_gpu_) {
        op_handle_->SetDeviceContext(place_list_[j], ctxs_[j].get());
      }
X
Xin Pan 已提交
153 154
      nodes_.emplace_back(
          ir::CreateNodeForTest("node3", ir::Node::Type::kVariable));
155
      VarHandle* out_var_handle =
X
Xin Pan 已提交
156
          new VarHandle(nodes_.back().get(), 2, j, "out", place_list_[j]);
157 158 159 160 161
      vars_.emplace_back(out_var_handle);
      op_handle_->AddOutput(out_var_handle);
    }

    // add dummy var
X
Xin Pan 已提交
162 163 164
    nodes_.emplace_back(
        ir::CreateNodeForTest("node4", ir::Node::Type::kVariable));
    vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
165
    DummyVarHandle* out_dummy_var_handle =
X
Xin Pan 已提交
166
        static_cast<DummyVarHandle*>(vars_.back());
167 168 169 170 171 172 173 174 175
    out_dummy_var_handle->ClearGeneratedOp();
    op_handle_->AddOutput(out_dummy_var_handle);
  }

  std::vector<float> InitLoDTensor(const std::string& varname,
                                   size_t input_scope_idx, const f::LoD& lod,
                                   float val_scalar = 0.0) {
    auto var = param_scopes_[input_scope_idx]->FindVar(varname);

176 177 178
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found in scope.",
                                        varname));
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    auto lod_tensor = var->GetMutable<f::LoDTensor>();
    std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
    for (size_t k = 0; k < send_vector.size(); ++k) {
      send_vector[k] = k + val_scalar;
    }
    paddle::framework::TensorFromVector<float>(
        send_vector, *(ctxs_[input_scope_idx]), lod_tensor);
    lod_tensor->set_lod(lod);
    lod_tensor->Resize(kDims);
    return send_vector;
  }

  std::vector<float> InitSelectedRows(const std::string& varname,
                                      size_t input_scope_idx,
                                      const std::vector<int64_t>& rows,
                                      int height, float value_scalar = 0.0) {
    std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
    for (size_t k = 0; k < send_vector.size(); ++k) {
      send_vector[k] = k + value_scalar;
    }

    auto var = param_scopes_[input_scope_idx]->FindVar(varname);
201 202 203
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found in scope.",
                                        varname));
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    auto selected_rows = var->GetMutable<f::SelectedRows>();
    auto value = selected_rows->mutable_value();
    value->mutable_data<float>(kDims, place_list_[input_scope_idx]);
    selected_rows->set_height(height);
    selected_rows->set_rows(rows);

    paddle::framework::TensorFromVector<float>(
        send_vector, *(ctxs_[input_scope_idx]), value);

    return send_vector;
  }

  void SelectedRowsEqual(const std::string& varname, int input_scope_idx,
                         const std::vector<float>& send_vector,
                         const std::vector<int64_t>& rows, int height) {
    auto var = param_scopes_[input_scope_idx]->FindVar(varname);
220 221 222
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found in scope.",
                                        varname));
223 224
    auto& selected_rows = var->Get<f::SelectedRows>();
    auto rt = selected_rows.value();
225 226 227 228 229
    PADDLE_ENFORCE_EQ(selected_rows.height(), height,
                      platform::errors::InvalidArgument(
                          "The height of SelectedRows is not equal to "
                          "the expected, expect %d, but got %ld.",
                          height, selected_rows.height()));
230 231

    for (size_t k = 0; k < selected_rows.rows().size(); ++k) {
232 233 234 235 236 237
      PADDLE_ENFORCE_EQ(
          selected_rows.rows()[k], rows[k],
          platform::errors::InvalidArgument(
              "The item at position %zu of rows of SelectedRows "
              "is not equal to the expected, expect %ld, but got %ld.",
              k, rows[k], selected_rows.rows()[k]));
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    }

    p::CPUPlace cpu_place;
    f::Tensor result_tensor;
    f::TensorCopySync(rt, cpu_place, &result_tensor);
    float* ct = result_tensor.data<float>();

    for (int64_t i = 0; i < f::product(kDims); ++i) {
      ASSERT_NEAR(ct[i], send_vector[i], 1e-5);
    }
  }

  void LoDTensorEqual(const std::string& varname,
                      const std::vector<float>& send_vec, const f::LoD& lod,
                      framework::Scope* scope) {
    p::CPUPlace cpu_place;
    auto var = scope->FindVar(varname);
255 256 257
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found in scope.",
                                        varname));
258
    auto tensor = var->Get<f::LoDTensor>();
259 260 261 262 263
    PADDLE_ENFORCE_EQ(tensor.lod(), lod,
                      platform::errors::InvalidArgument(
                          "The LoD of tensor is not equal to "
                          "the expected, expect %s, but got %s.",
                          lod, tensor.lod()));
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    f::Tensor result_tensor;
    f::TensorCopySync(tensor, cpu_place, &result_tensor);
    float* ct = result_tensor.mutable_data<float>(cpu_place);
    for (int64_t k = 0; k < f::product(kDims); ++k) {
      ASSERT_NEAR(ct[k], send_vec[k], 1e-5);
    }
  }

  void TestBroadcastLodTensor(size_t input_scope_idx) {
    f::LoD lod{{0, 10, 20}};
    auto send_vector = InitLoDTensor("input", input_scope_idx, lod);

    op_handle_->Run(false);

    WaitAll();
    for (size_t j = 0; j < place_list_.size(); ++j) {
      LoDTensorEqual("out", send_vector, lod, param_scopes_[j]);
    }
  }

  void TestBroadcastSelectedRows(size_t input_scope_idx) {
    std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
                              2, 4, 6, 3, 1, 1, 1,  1, 3, 7};
    int height = static_cast<int>(kDims[0] * 2);
    auto send_vector = InitSelectedRows("input", input_scope_idx, rows, height);

    op_handle_->Run(false);

    WaitAll();
    for (size_t j = 0; j < place_list_.size(); ++j) {
      SelectedRowsEqual("out", input_scope_idx, send_vector, rows, height);
    }
  }
};

}  // namespace details
}  // namespace framework
}  // namespace paddle