test_imperative_triple_grad.py 8.5 KB
Newer Older
W
Weilong Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle
from paddle.fluid.wrapped_decorator import wrap_decorator
from paddle.vision.models import resnet50, resnet101
import unittest
from unittest import TestCase
import numpy as np
22
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
W
Weilong Wu 已提交
23 24 25 26


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
27
        if fluid._non_static_mode():
W
Weilong Wu 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    np.random.seed(2021)
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


class TestDygraphTripleGrad(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 5]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
        return fluid.dygraph.grad(
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
            create_graph=create_graph,
            allow_unused=allow_unused)

    @dygraph_guard
69
    def func_exception(self):
W
Weilong Wu 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad(
                [random_var(shape)], [random_var(shape)], no_grad_vars=[1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)

    @dygraph_guard
99
    def func_example_with_gradient_and_create_graph(self):
W
Weilong Wu 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        x = random_var(self.shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.shape).astype('float32')
        dx_expected = np.matmul(dout * out_np * (1 - out_np),
                                np.transpose(y_np))
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.shape).astype('float32')
        DDX = np.ones(self.shape).astype('float32')
        double_grad_tmp1 = np.matmul(dout * out_np * (1 - out_np),
                                     np.transpose(DDY))
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(double_grad_tmp3,
                                                    np.transpose(y_np))
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
        dddx_expected = np.matmul(((tmp1 + tmp2) * out_np * (1 - out_np)),
                                  np.transpose(y_np))

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

149 150 151 152 153
    def test_all_cases(self):
        if _in_legacy_dygraph():
            self.func_exception()
            self.func_example_with_gradient_and_create_graph()

W
Weilong Wu 已提交
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
class TestDygraphTripleGradBradcastCase(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.x_shape = [3, 2, 2]
        self.y_shape = [1, 2, 2]
        self.z_shape = [2, 2]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
        return fluid.dygraph.grad(
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
            create_graph=create_graph,
            allow_unused=allow_unused)

    @dygraph_guard
181
    def func_example_with_gradient_and_create_graph(self):
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        x = random_var(self.x_shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.y_shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.z_shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.x_shape).astype('float32')
        dx_expected = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(
                y_np, axes=(0, 2, 1)))
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.y_shape).astype('float32')
        DDX = np.ones(self.x_shape).astype('float32')
        double_grad_tmp1 = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(
                DDY, axes=(0, 2, 1)))
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(
            double_grad_tmp3, np.transpose(
                y_np, axes=(0, 2, 1)))
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.x_shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
        dddx_expected = np.matmul(
            ((tmp1 + tmp2) * out_np * (1 - out_np)),
            np.transpose(
                y_np, axes=(0, 2, 1)))

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

236 237 238 239
    def test_all_cases(self):
        if _in_legacy_dygraph():
            self.func_example_with_gradient_and_create_graph()

240

W
Weilong Wu 已提交
241 242
if __name__ == '__main__':
    unittest.main()