operator.h 14.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

C
chengduo 已提交
55 56 57
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
58
// define some kernel priority
59
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
60 61
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

62 63 64 65
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
66
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
67 68
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
69

Q
Qiao Longfei 已提交
70
class OperatorBase;
71
class ExecutionContext;
72

X
Xin Pan 已提交
73 74
class RuntimeContext {
 public:
X
Xin Pan 已提交
75 76
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
77 78 79 80 81

  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
82
/**
X
Xin Pan 已提交
83
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
84 85 86 87 88 89
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
90 91
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
92

Q
Qiao Longfei 已提交
93 94
  virtual ~OperatorBase() {}

95
  /// Executor will call this interface function to Run an op.
96 97
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
98

T
typhoonzero 已提交
99 100 101
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

102 103 104
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
105

106 107
  virtual bool SupportGPU() const { return false; }

108 109
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
110
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
111 112 113 114 115 116 117
  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
118

Y
Yu Yang 已提交
119 120
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
121

122
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
123
  //! Get a input with argument's name described in `op_proto`
124
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
125
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
126
  const std::vector<std::string>& Inputs(const std::string& name) const;
127
  //! Get all inputs variable names
Q
qijun 已提交
128 129
  std::vector<std::string> InputVars() const;

130
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
131
  //! Get a output with argument's name described in `op_proto`
132
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
133 134
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
135
  const std::vector<std::string>& Outputs(const std::string& name) const;
136
  //! Get all outputs variable names
Y
Yu Yang 已提交
137
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
138

139
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
140
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
141 142
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
143

Q
qiaolongfei 已提交
144
 protected:
Q
Qiao Longfei 已提交
145
  std::string type_;
D
dongzhihong 已提交
146
  // NOTE: in case of OpGrad, inputs_ contains:
147
  // I (Inputs)
D
dongzhihong 已提交
148 149
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
150
  VariableNameMap inputs_;
Y
Yu Yang 已提交
151

D
dongzhihong 已提交
152 153
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
154
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
155
  AttributeMap attrs_;
156 157
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
158 159 160 161

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
162 163
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
164 165
};

166
class ExecutionContext {
Y
Yan Chunwei 已提交
167
 public:
168
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
169 170 171
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
172

Q
qiaolongfei 已提交
173 174 175 176
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
177
  template <typename T>
Y
Yu Yang 已提交
178 179
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
180 181
  }

182
  bool HasInput(const std::string& name) const;
183

184
  bool HasOutput(const std::string& name) const;
185

Y
Yu Yang 已提交
186
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
187
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
188 189
  }

Y
Yu Yang 已提交
190
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
191
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
192 193
  }

X
Xin Pan 已提交
194
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
195

X
Xin Pan 已提交
196
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
197

198 199
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
200 201
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
202
    res.reserve(names.size());
203 204
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
205 206
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
207
                   });
Y
Yan Chunwei 已提交
208 209 210
    return res;
  }

211
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
212
    auto names = op_.Outputs(name);
213
    std::vector<Variable*> res;
214
    res.reserve(names.size());
215 216
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
217 218
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
219
                   });
Y
Yan Chunwei 已提交
220 221 222
    return res;
  }

223 224
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
225
    auto* var = InputVar(name);
226
    return var == nullptr ? nullptr : &var->Get<T>();
227 228 229 230
  }

  template <typename T>
  T* Output(const std::string& name) const {
231
    auto var = OutputVar(name);
232
    return var == nullptr ? nullptr : var->GetMutable<T>();
233 234
  }

X
Xin Pan 已提交
235
  template <typename T>
X
clean  
Xin Pan 已提交
236 237
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
238 239 240 241
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
242 243
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
244 245 246
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
247
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
248

X
clean  
Xin Pan 已提交
249
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
250

251 252 253 254 255 256
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
257
                   [&](const std::string& sub_name) -> const T* {
258
                     auto var = scope_.FindVar(sub_name);
259
                     return var == nullptr ? nullptr : &var->Get<T>();
260 261 262 263 264
                   });
    return res;
  }

  template <typename T>
265
  std::vector<T*> MultiOutput(const std::string& name) const {
266
    auto names = op_.Outputs(name);
267
    std::vector<T*> res;
268 269
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
270
                   [&](const std::string& sub_name) -> T* {
271
                     auto var = scope_.FindVar(sub_name);
272
                     return var == nullptr ? nullptr : var->GetMutable<T>();
273 274 275 276
                   });
    return res;
  }

277
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
278

Q
QI JUN 已提交
279 280 281 282 283
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

284
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
285
    return device_context_;
Q
qijun 已提交
286
  }
Q
qijun 已提交
287

Q
QI JUN 已提交
288 289 290 291 292 293 294 295
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
296
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
297 298 299
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
300

D
dzhwinter 已提交
301
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
302 303 304 305
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

306
 private:
307 308
  const OperatorBase& op_;
  const Scope& scope_;
309
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
310
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
311 312
};

S
sneaxiy 已提交
313 314 315 316 317 318 319 320 321 322 323 324
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

325 326 327
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
328
template <>
X
clean  
Xin Pan 已提交
329
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
330 331
    const std::string& name) const;

332 333 334 335 336 337 338
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
339
template <>
X
clean  
Xin Pan 已提交
340
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
341

342 343 344 345
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
346
class OpKernelBase {
Q
qijun 已提交
347
 public:
Q
qijun 已提交
348
  /**
349
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
350 351
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
352
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
353 354
   */

355
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
356

Y
Yu Yang 已提交
357 358 359 360 361 362 363
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
364 365
};

Y
Yu Yang 已提交
366 367
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
368
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
369
  using OpKernelMap =
Y
yuyang18 已提交
370
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
371

Y
Yu Yang 已提交
372 373
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
374 375
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
376 377 378 379
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
380
  }
Y
Yan Chunwei 已提交
381

382
  bool SupportGPU() const override {
Y
Yu Yang 已提交
383 384 385 386 387
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
388 389
  }

390 391 392
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
393

X
Xin Pan 已提交
394 395
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
396

Q
qiaolongfei 已提交
397
 protected:
398 399 400 401
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
402 403

 private:
404
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
405
  // same.
406
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
407
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
408 409 410 411 412 413 414

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
415 416 417 418
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
419 420 421 422

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
423 424
};

Y
Yu Yang 已提交
425 426
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
427 428
}  // namespace framework
}  // namespace paddle