helper.h 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

L
luotao1 已提交
17
#include <glog/logging.h>
18

19
#include <algorithm>
L
luotao1 已提交
20
#include <chrono>  // NOLINT
P
peizhilin 已提交
21
#include <iterator>
22
#include <numeric>
23 24 25
#include <sstream>
#include <string>
#include <vector>
26
#include "paddle/fluid/inference/api/paddle_inference_api.h"
P
peizhilin 已提交
27
#include "paddle/fluid/platform/port.h"
28
#include "paddle/fluid/string/printf.h"
29 30 31 32

namespace paddle {
namespace inference {

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
// Timer for timer
class Timer {
 public:
  std::chrono::high_resolution_clock::time_point start;
  std::chrono::high_resolution_clock::time_point startu;

  void tic() { start = std::chrono::high_resolution_clock::now(); }
  double toc() {
    startu = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_span =
        std::chrono::duration_cast<std::chrono::duration<double>>(startu -
                                                                  start);
    double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
    return used_time_ms;
  }
};

50 51
static void split(const std::string &str, char sep,
                  std::vector<std::string> *pieces) {
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  pieces->clear();
  if (str.empty()) {
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}
67 68
static void split_to_float(const std::string &str, char sep,
                           std::vector<float> *fs) {
69 70 71 72 73
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs),
                 [](const std::string &v) { return std::stof(v); });
}
L
luotao1 已提交
74 75 76 77 78 79 80
static void split_to_int64(const std::string &str, char sep,
                           std::vector<int64_t> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
                 [](const std::string &v) { return std::stoi(v); });
}
81 82 83 84 85 86 87 88 89 90
template <typename T>
std::string to_string(const std::vector<T> &vec) {
  std::stringstream ss;
  for (const auto &c : vec) {
    ss << c << " ";
  }
  return ss.str();
}
template <>
std::string to_string<std::vector<float>>(
91 92
    const std::vector<std::vector<float>> &vec);

93 94
template <>
std::string to_string<std::vector<std::vector<float>>>(
95 96
    const std::vector<std::vector<std::vector<float>>> &vec);

97 98 99 100 101
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
  return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}

L
luotao1 已提交
102 103 104
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data) {
105
  // Assign buffer
106 107
  int num_elems = VecReduceToInt(tensor->shape);
  tensor->data.Resize(sizeof(T) * num_elems);
108 109
  int c = 0;
  for (const auto &f : data) {
L
luotao1 已提交
110 111 112
    for (T v : f) {
      static_cast<T *>(tensor->data.data())[c++] = v;
    }
113 114 115
  }
}

T
Tao Luo 已提交
116 117 118 119 120 121 122 123 124 125
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data,
                             const std::vector<size_t> &lod) {
  int size = lod[lod.size() - 1];
  tensor->shape.assign({size, 1});
  tensor->lod.assign({lod});
  TensorAssignData(tensor, data);
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139
template <typename T>
static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                    const std::vector<std::vector<T>> &data) {
  int size{0};
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  int c = 0;
  for (const auto &f : data) {
    for (T v : f) {
      ptr[c++] = v;
    }
  }
  return size;
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) {
  if (a.dtype != b.dtype) {
    LOG(ERROR) << "dtype not match";
    return false;
  }

  if (a.lod.size() != b.lod.size()) {
    LOG(ERROR) << "lod not match";
    return false;
  }
  for (size_t i = 0; i < a.lod.size(); i++) {
    if (a.lod[i].size() != b.lod[i].size()) {
      LOG(ERROR) << "lod not match";
      return false;
    }
    for (size_t j = 0; j < a.lod[i].size(); j++) {
      if (a.lod[i][j] != b.lod[i][j]) {
        LOG(ERROR) << "lod not match";
        return false;
      }
    }
  }

  if (a.shape.size() != b.shape.size()) {
    LOG(INFO) << "shape not match";
    return false;
  }
  for (size_t i = 0; i < a.shape.size(); i++) {
    if (a.shape[i] != b.shape[i]) {
      LOG(ERROR) << "shape not match";
      return false;
    }
  }

  auto *adata = static_cast<float *>(a.data.data());
  auto *bdata = static_cast<float *>(b.data.data());
  for (int i = 0; i < VecReduceToInt(a.shape); i++) {
    if (adata[i] != bdata[i]) {
      LOG(ERROR) << "data not match";
      return false;
    }
  }
  return true;
}

185
static std::string DescribeTensor(const PaddleTensor &tensor) {
L
luotao1 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  os << " - data: ";

209
  int dim = VecReduceToInt(tensor.shape);
L
luotao1 已提交
210 211 212 213 214 215 216
  for (int i = 0; i < dim; i++) {
    os << static_cast<float *>(tensor.data.data())[i] << " ";
  }
  os << '\n';
  return os.str();
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name() << "]\n";

  os << " - shape: " << to_string(tensor.shape()) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod()) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  os << " - data: ";
  PaddlePlace place;
  int size;
  const auto *data = tensor.data<float>(&place, &size);
  for (int i = 0; i < size; i++) {
    os << data[i] << " ";
  }
  return os.str();
}

237 238
static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
                      double latency, int epoch = 1) {
239
  LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat
L
luotao1 已提交
240
            << ", threads: " << num_threads << ", thread id: " << tid
S
Sylwester Fraczek 已提交
241 242
            << ", latency: " << latency << "ms, fps: " << 1 / (latency / 1000.f)
            << " ======";
L
luotao1 已提交
243 244 245 246 247 248
  if (epoch > 1) {
    int samples = batch_size * epoch;
    LOG(INFO) << "====== sample number: " << samples
              << ", average latency of each sample: " << latency / samples
              << "ms ======";
  }
L
luotao1 已提交
249 250
}

251 252
}  // namespace inference
}  // namespace paddle