norm.py 51.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define normalization api  
29

30
import six
31
from ...fluid.dygraph.nn import InstanceNorm
32 33

from ...fluid.dygraph import BatchNorm  #DEFINE_ALIAS
34 35 36
#from ...fluid.dygraph import GroupNorm  #DEFINE_ALIAS

#from ...fluid.dygraph import LayerNorm  #DEFINE_ALIAS
37
from ...fluid.dygraph import SpectralNorm  #DEFINE_ALIAS
C
ceci3 已提交
38 39

from ...fluid.dygraph import layers
40
from ...framework import get_default_dtype, set_default_dtype
C
ceci3 已提交
41 42 43 44 45
from ...fluid.framework import in_dygraph_mode

from ...fluid.initializer import Constant
from ...fluid.param_attr import ParamAttr
from ...fluid.data_feeder import check_variable_and_dtype, check_type
46 47 48 49 50 51 52
from ...fluid import core, dygraph_utils

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
53
from ...fluid.dygraph.base import no_grad
54
from .. import functional as F
55 56

__all__ = [
57 58 59 60 61 62 63 64 65 66 67 68 69
    'BatchNorm',
    'GroupNorm',
    'LayerNorm',
    'SpectralNorm',
    'InstanceNorm',
    'BatchNorm1d',
    'BatchNorm2d',
    'BatchNorm3d',
    'InstanceNorm1d',
    'InstanceNorm2d',
    'InstanceNorm3d',
    'SyncBatchNorm',
    'LocalResponseNorm',
70
]
C
ceci3 已提交
71 72


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
class _InstanceNormBase(layers.Layer):
    """
    This class is based class for InstanceNorm1d, 2d, 3d. 

    See InstaceNorm1d, InstanceNorm2d or InstanceNorm3d for more details.
    """

    def __init__(self,
                 num_features,
                 epsilon=1e-5,
                 momentum=0.9,
                 weight_attr=None,
                 bias_attr=None,
                 track_running_stats=False,
                 data_format="NCHW",
                 name=None):
        super(_InstanceNormBase, self).__init__()

        if weight_attr == False or bias_attr == False:
92
            assert weight_attr == bias_attr, "weight_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        if weight_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon)


class InstanceNorm1d(_InstanceNormBase):
    """
    Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        track_running_stats(bool, optional): Whether to use global mean and
            variance. In train mode, when setting track_running_stats True, the global mean
            and variance are also used during train period. Default: False.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Defalut "NCL".
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.

    **Note**:
        Momentum and track_running_stats is not effective. The next version will fix the problem .


    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          instance_norm = paddle.nn.InstanceNorm1d(2)
          instance_norm_out = instance_norm(x)

190
          print(instance_norm_out.numpy())
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'.format(
                len(input.shape)))


class InstanceNorm2d(_InstanceNormBase):
    """
    Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        track_running_stats(bool, optional): Whether to use global mean and
            variance. In train mode, when setting track_running_stats True, the global mean
            and variance are also used during train period. Default: False.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.

    **Note**:
        Momentum and track_running_stats is not effective. The next version will fix the problem .

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          instance_norm = paddle.nn.InstanceNorm2d(2)
          instance_norm_out = instance_norm(x)

267
          print(instance_norm_out.numpy())
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
            raise ValueError('expected 4D input (got {}D input)'.format(
                len(input.shape)))


class InstanceNorm3d(_InstanceNormBase):
    """
    Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        track_running_stats(bool, optional): Whether to use global mean and
            variance. In train mode, when setting track_running_stats True, the global mean
            and variance are also used during train period. Default: False.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.

    **Note**:
        Momentum and track_running_stats is not effective. The next version will fix the problem .

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          instance_norm = paddle.nn.InstanceNorm3d(2)
          instance_norm_out = instance_norm(x)

343
          print(instance_norm_out.numpy())
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
            raise ValueError('expected 5D input (got {}D input)'.format(
                len(input.shape)))


class GroupNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
361
        num_channels(int): The number of channels of input.
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python
          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
          x = paddle.to_tensor(x_data) 
389
          group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
390 391
          group_norm_out = group_norm(x)

392
          print(group_norm_out.numpy())
393 394 395 396
    """

    def __init__(self,
                 num_groups,
397
                 num_channels,
398 399 400
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
401
                 data_format='NCHW',
402 403 404 405 406 407 408
                 name=None):
        super(GroupNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
409
        if data_format != 'NCHW':
410 411 412 413
            raise ValueError("unsupported data layout:" + data_layout)

        param_shape = [self._num_channels]

414 415 416 417 418 419 420 421 422 423
        if weight_attr == False:
            self.weight = self.create_parameter(
                attr=None, shape=param_shape, default_initializer=Constant(1.0))
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))
            self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.
424

425 426 427 428 429 430 431 432 433 434 435
        if bias_attr == False:
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True)
            self.bias.stop_gradient = True
        else:
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True)
            self.bias.stop_gradient = self._bias_attr != None and self._bias_attr.learning_rate == 0.
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

    def forward(self, input):
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._num_groups})

        return self._helper.append_activation(group_norm_out, None)


class LayerNorm(layers.Layer):
    """
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}

        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          layer_norm = paddle.nn.LayerNorm(x_data.shape[1:])
          layer_norm_out = layer_norm(x)

529
          print(layer_norm_out.numpy())
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    """

    def __init__(self,
                 normalized_shape,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))

        if bias_attr is False:
            self.bias = None
        else:
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True)

    def forward(self, input):
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon)


class _BatchNormBase(layers.Layer):
    """
    BatchNorm base .
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 track_running_stats=True,
                 name=None):
        super(_BatchNormBase, self).__init__()
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        if get_default_dtype() == 'float16':
            set_default_dtype('float32')

        param_shape = [num_features]

        # create parameter
596 597 598 599 600 601 602 603 604 605
        if weight_attr == False:
            self.weight = self.create_parameter(
                attr=None, shape=param_shape, default_initializer=Constant(1.0))
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))
            self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.
606

607 608 609 610 611 612 613 614 615 616 617
        if bias_attr == False:
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True)
            self.bias.stop_gradient = True
        else:
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True)
            self.bias.stop_gradient = self._bias_attr != None and self._bias_attr.learning_rate == 0.
618 619 620 621 622 623 624 625 626 627 628 629 630 631

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True),
632
            shape=param_shape)
633 634 635 636 637 638 639 640
        self._mean.stop_gradient = True

        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True),
641
            shape=param_shape)
642 643 644 645 646 647 648 649
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
        self._track_running_stats = track_running_stats
650
        self._name = name
651 652 653 654

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

655 656 657
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

658 659
    def forward(self, input):

660 661
        self._check_data_format(self._data_format)

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
        self._check_input_dim(input)

        if not self.training and not self._track_running_stats:
            raise ValueError(
                'When inference, expected track_running_stats is True.')

        if self.training and not self._track_running_stats:
            warnings.warn(
                "When training, we now always track global mean and variance.")

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format)


class BatchNorm1d(_BatchNormBase):
    """
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

    When track_running_stats = False, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

    When track_running_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The normalization function formula is as follows:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Defalut "NCL".
        track_running_stats(bool, optional): Whether to use global mean and variance. In train period, 
            True will track global mean and variance used for inference. When inference, track_running_stats must be 
            True. Default: True.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.

    **Note**:
        Now track_running_stats is actucal always true. The next version will fix the problem .
    

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 1, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          batch_norm = paddle.nn.BatchNorm1d(1)
          batch_norm_out = batch_norm(x)

762
          print(batch_norm_out.numpy())
763 764
    """

765 766 767 768 769 770
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
        else:
            raise ValueError('expected NC , NCL or None for data_format input')

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'.format(
                len(input.shape)))


class BatchNorm2d(_BatchNormBase):
    """
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

    When track_running_stats = False, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

    When track_running_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The normalization function formula is as follows:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
825
        data_format(str, optional): Specify the input data format, the data format can be "NCHW". Default: NCHW.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        track_running_stats(bool, optional): Whether to use global mean and variance. In train period, 
            True will track global mean and variance used for inference. When inference, track_running_stats must be 
            True. Default: True.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    **Note**:
        Now track_running_stats is actucal always true. The next version will fix the problem .

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 1, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          batch_norm = paddle.nn.BatchNorm2d(1)
          batch_norm_out = batch_norm(x)

854
          print(batch_norm_out.numpy())
855 856
    """

857
    def _check_data_format(self, input):
858
        if input == 'NCHW':
859 860
            self._data_format = input
        else:
861
            raise ValueError('expected NCHW for data_format input')
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
            raise ValueError('expected 4D input (got {}D input)'.format(
                len(input.shape)))


class BatchNorm3d(_BatchNormBase):
    """
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

    When track_running_stats = False, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

    When track_running_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The normalization function formula is as follows:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW". Default: NCDHW.
        track_running_stats(bool, optional): Whether to use global mean and variance. In train period, 
            True will track global mean and variance used for inference. When inference, track_running_stats must be 
            True. Default: True.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    **Note**:
        Now track_running_stats is actucal always true. The next version will fix the problem .

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 1, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          batch_norm = paddle.nn.BatchNorm3d(1)
          batch_norm_out = batch_norm(x)

946
          print(batch_norm_out.numpy())
947 948
    """

949 950 951 952 953 954
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
        else:
            raise ValueError('expected NCDHW or None for data_format input')

955 956 957 958 959 960
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
            raise ValueError('expected 5D input (got {}D input)'.format(
                len(input.shape)))


961
class SyncBatchNorm(_BatchNormBase):
C
ceci3 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    """
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can 
    be used as a normalizer function for other operations, such as conv2d and fully connected 
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

    When model in training mode, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are global statistics (moving_mean and moving_variance, 
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The formula of normalization is as follows:
 
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\eps}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\eps` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable scale parameter vector
    - :math:`\\beta` : trainable shift parameter vector 

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. If it is set to False, 
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. If it is set to False, this layer will not 
             have trainable bias parameter. Default: None.
        track_running_stats(bool, optional): Whether to compute global stats, which including running mean and 
             running variance. Default: True.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          paddle.disable_static()
          x = paddle.to_tensor(x)
          if paddle.fluid.is_compiled_with_cuda():
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
              print(hidden1.numpy())
              # [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
1048
                 epsilon=1e-05,
C
ceci3 已提交
1049 1050 1051
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
1052
                 track_running_stats=True,
C
ceci3 已提交
1053
                 name=None):
1054 1055 1056
        super(SyncBatchNorm,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, track_running_stats, name)
C
ceci3 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

    def forward(self, x):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", not self.training, "data_layout",
1070
                     self._data_format, "use_mkldnn", False, "fuse_with_relu",
C
ceci3 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079
                     False, "use_global_stats", False, 'trainable_statistics',
                     False)
            sync_batch_norm_out, _, _, _, _, _ = core.ops.sync_batch_norm(
                x, self.weight, self.bias, self._mean, self._variance, mean_out,
                variance_out, *attrs)

            return sync_batch_norm_out

        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
1080
                                 'SyncBatchNorm')
C
ceci3 已提交
1081 1082 1083 1084 1085

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1086
            "data_layout": self._data_format,
C
ceci3 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return sync_batch_norm_out
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

                paddle.disable_static()
                model = nn.Sequential(nn.Conv2d(3, 5, 3), nn.BatchNorm2d(5))
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
1144 1145 1146 1147
            layer_output = SyncBatchNorm(
                layer._num_features, layer._momentum, layer._epsilon,
                layer._weight_attr, layer._bias_attr, layer._data_format,
                layer._track_running_stats, layer._name)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

            if layer._weight_attr != False and layer._bias_attr != False:
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

        for name, sublayer in layer.named_sublayers():
            layer_output.add_sublayer(name,
                                      cls.convert_sync_batchnorm(sublayer))
        del layer
        return layer_output
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220


class LocalResponseNorm(layers.Layer):
    """
        Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
        For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

        See more details in :ref:`api_paddle_nn_functional_local_response_norm` .

        Parameters:
            size (int): The number of channels to sum over.
            alpha (float, optional): The scaling parameter, positive. Default:1e-4
            beta (float, optional): The exponent, positive. Default:0.75
            k (float, optional): An offset, positive. Default: 1.0
            data_format (str, optional): Specify the data format of the input, and the data format of the output
                will be consistent with that of the input. An optional string from:
                If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
                the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
                If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
                If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
            name (str, optional): Name for the operation (optional, default is None). For more information,
                please refer to :ref:`api_guide_Name`.

        Shape:
            - input: 3-D/4-D/5-D tensor.
            - output: 3-D/4-D/5-D tensor, the same shape as input.

        Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
            m = paddle.nn.LocalResponseNorm(size=5)
            y = m(x)
            print(y.shape)  # [3, 3, 112, 112]
        """

    def __init__(self,
                 size,
                 alpha=0.0001,
                 beta=0.75,
                 k=1.0,
                 data_format="NCHW",
                 name=None):
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.local_response_norm(input, self.size, self.alpha, self.beta,
                                    self.k, self.data_format, self.name)
        return out