reduce_op.cc 6.5 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/reduce_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27 28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReduceOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReduceOp should not be null.");
    auto x_dims = ctx->GetInputDim("X");
G
guosheng 已提交
32
    auto x_rank = x_dims.size();
G
guosheng 已提交
33
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
34
    int dim = ctx->Attrs().Get<int>("dim");
G
guosheng 已提交
35 36 37
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
38
        "The dim should be in the range [-rank(input), rank(input)).");
39
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
G
guosheng 已提交
40 41 42 43 44 45 46
    auto dims_vector = vectorize(x_dims);
    if (keep_dim || x_rank == 1) {
      dims_vector[dim] = 1;
    } else {
      dims_vector.erase(dims_vector.begin() + dim);
    }
    auto out_dims = framework::make_ddim(dims_vector);
47
    ctx->SetOutputDim("Out", out_dims);
48
    if (dim != 0) {
49 50
      // Only pass LoD when not reducing on the first dim.
      ctx->ShareLoD("X", /*->*/ "Out");
51
    }
G
guosheng 已提交
52 53 54 55 56 57 58
  }
};

class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

59
  void InferShape(framework::InferShapeContext *ctx) const override {
60 61 62 63
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    auto x_dims = ctx->GetInputDim("X");
G
guosheng 已提交
64
    auto x_rank = x_dims.size();
G
guosheng 已提交
65
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
66
    int dim = ctx->Attrs().Get<int>("dim");
G
guosheng 已提交
67 68 69
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
70
        "The dim should be in the range [-rank(input), rank(input)).");
71 72 73 74
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
G
guosheng 已提交
75 76 77
  }
};

G
guosheng 已提交
78
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
G
guosheng 已提交
79
 public:
G
guosheng 已提交
80
  ReduceOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
G
guosheng 已提交
81 82 83 84 85
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "(Tensor) The input tensor. Tensors with rank at most 6 are supported");
    AddOutput("Out", "(Tensor) The result tensor.");
86 87 88 89 90 91
    AddAttr<int>(
        "dim",
        "(int, default 1) The dimension to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim < 0`, the dim to reduce is `rank + dim`. "
        "Noting that reducing on the first dim will make the LoD info lost.")
92
        .SetDefault(0);
G
guosheng 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    comment_ = R"DOC(
{ReduceOP} operator computes the {reduce} of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string &src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string op) {
    Replace(comment_, "{ReduceOP}", name);
    Replace(comment_, "{reduce}", op);
G
guosheng 已提交
119 120 121
  }
};

G
guosheng 已提交
122 123 124 125 126 127 128 129 130 131 132
class ReduceSumOpMaker : public ReduceOpMaker {
 public:
  ReduceSumOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceSum", "sum");
    AddComment(comment_);
  }
};

class ReduceMeanOpMaker : public ReduceOpMaker {
G
guosheng 已提交
133 134 135
 public:
  ReduceMeanOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
G
guosheng 已提交
136 137 138
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMean", "mean");
    AddComment(comment_);
G
guosheng 已提交
139 140 141
  }
};

G
guosheng 已提交
142
class ReduceMaxOpMaker : public ReduceOpMaker {
G
guosheng 已提交
143 144 145
 public:
  ReduceMaxOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
G
guosheng 已提交
146 147 148
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMax", "max");
    AddComment(comment_);
G
guosheng 已提交
149 150 151
  }
};

G
guosheng 已提交
152
class ReduceMinOpMaker : public ReduceOpMaker {
G
guosheng 已提交
153 154 155
 public:
  ReduceMinOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
G
guosheng 已提交
156 157 158
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMin", "min");
    AddComment(comment_);
G
guosheng 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
            ops::ReduceGradOp);

REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
            reduce_mean_grad, ops::ReduceGradOp);

REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
            ops::ReduceGradOp);

L
Luo Tao 已提交
176
REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad,
G
guosheng 已提交
177
            ops::ReduceGradOp);
178 179 180 181 182 183 184 185 186 187

#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor)     \
  REGISTER_OP_CPU_KERNEL(                                                  \
      reduce_type,                                                         \
      ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::functor>); \
  REGISTER_OP_CPU_KERNEL(reduce_type##_grad,                               \
                         ops::ReduceGradKernel<paddle::platform::CPUPlace, \
                                               float, ops::grad_functor>);

FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL);