nan_inf_utils_detail.cc 17.5 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
#include "paddle/fluid/framework/op_proto_maker.h"
namespace paddle {
namespace framework {
namespace details {

static std::once_flag white_list_init_flag;

static int op_role_nan_inf_white_list = 0;

static constexpr int FORWARD = 0x10000;

// lazy init
static const std::unordered_map<std::string, int>& role_str2int() {
  /* In op_proto_maker.h
   * framework::OpRole::kForward      = 0x0000,
   * framework::OpRole::kBackward     = 0x0001,
   * framework::OpRole::kOptimize     = 0x0002,
   * framework::OpRole::kRPC          = 0x0004,
   * framework::OpRole::kDist         = 0x0008,
   * framework::OpRole::kLRSched      = 0x0010,
   * framework::OpRole::kLoss         = 0x0100,
   * framework::OpRole::kNotSpecified = 0x1000,
   */
  static const std::unordered_map<std::string, int> _role_str2int = {
      {"forward", FORWARD}, /* kForward=0, can't filter */
      {"backward", static_cast<int>(framework::OpRole::kBackward)},
      {"optimize", static_cast<int>(framework::OpRole::kOptimize)},
      {"rpc", static_cast<int>(framework::OpRole::kRPC)},
      {"dist", static_cast<int>(framework::OpRole::kDist)},
      {"lrsched", static_cast<int>(framework::OpRole::kLRSched)},
      {"loss", static_cast<int>(framework::OpRole::kLoss)},
      {"default", static_cast<int>(framework::OpRole::kNotSpecified)},
  };
  return _role_str2int;
}

static std::unordered_set<std::string>& op_type_nan_inf_white_list() {
  static std::unordered_set<std::string> _op_type_nan_inf_white_list = {
      "coalesce_tensor", /* This Op will alloc tensor, and may not init space */
  };
  return _op_type_nan_inf_white_list;
}

static std::unordered_map<std::string, std::vector<std::string>>&
op_var_nan_inf_white_list() {
  static std::unordered_map<std::string, std::vector<std::string>>
      _op_var_nan_inf_white_list = {
          /* encoded & gather var consist of idx&val, can't judge directly */
          {"dgc", {"__dgc_encoded__", "__dgc_gather__"}},
      };
  return _op_var_nan_inf_white_list;
}

static void InitWhiteListFormEnv() {
  // op_type_skip and op_var_skip may be NULL.
  // So need init static value in there, prevent thread competition.
  // NOTE. role_str2int needn't do this for it only used in this func.
  op_type_nan_inf_white_list();
  op_var_nan_inf_white_list();

  // export PADDLE_INF_NAN_SKIP_OP="op0,op1,op2"
  // export PADDLE_INF_NAN_SKIP_ROLE="role1,role2,role3"
  // export PADDLE_INF_NAN_SKIP_VAR="op0:var0,op0:var1,op1:var0"
  const char* op_type_skip = std::getenv("PADDLE_INF_NAN_SKIP_OP");
  const char* op_role_skip = std::getenv("PADDLE_INF_NAN_SKIP_ROLE");
  const char* op_var_skip = std::getenv("PADDLE_INF_NAN_SKIP_VAR");

  if (op_type_skip != NULL) {
    std::stringstream ss(op_type_skip);
    std::string op_type;
    while (std::getline(ss, op_type, ',')) {
      op_type_nan_inf_white_list().emplace(op_type);
    }
  }

  if (op_role_skip != NULL) {
    std::stringstream ss(op_role_skip);
    std::string op_role;
    while (std::getline(ss, op_role, ',')) {
      PADDLE_ENFORCE_EQ(role_str2int().find(op_role) != role_str2int().end(),
                        true,
                        platform::errors::InvalidArgument(
                            "Skip role must be one of "
                            "{forward,backward,optimize,rpc,dist,lrsched,loss,"
                            "default}, instead of %s",
                            op_role));
      op_role_nan_inf_white_list |= role_str2int().at(op_role);
    }
  }

  if (op_var_skip != NULL) {
    std::stringstream ss(op_var_skip);
    std::string op_var;
    while (std::getline(ss, op_var, ',')) {
      auto pos = op_var.find(":");
      PADDLE_ENFORCE_EQ(
          pos != std::string::npos, true,
          platform::errors::InvalidArgument(
              "Skip var format must be op:var, instead of %s", op_var));
      std::string op = op_var.substr(0, pos);
      std::string var = op_var.substr(pos + 1);

      op_var_nan_inf_white_list()[op].emplace_back(var);
    }
  }
}

template <typename T>
static void PrintNanInf(const T* value, const size_t numel, int print_num,
                        const std::string& op_type,
                        const std::string& var_name) {
  size_t nan_count, inf_count, num_count;
  nan_count = inf_count = num_count = 0;

  // CPU print num value
  for (size_t i = 0; i < numel; ++i) {
    size_t count = 0;
    if (std::isnan(value[i])) {
      count = nan_count++;
    } else if (std::isinf(value[i])) {
      count = inf_count++;
    } else {
      count = num_count++;
    }

    if (count < static_cast<size_t>(print_num)) {
      printf("numel:%lu index:%lu value:%f\n", static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i), static_cast<float>(value[i]));
    }
  }
  printf("In cpu, there has %lu,%lu,%lu nan,inf,num\n",
         static_cast<uint64_t>(nan_count), static_cast<uint64_t>(inf_count),
         static_cast<uint64_t>(num_count));
150 151 152
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
      op_type));
W
WangXi 已提交
153 154 155 156 157 158 159
}

// openmp 4.0, reduction with fp16
#if defined _OPENMP && _OPENMP >= 201307
// more detail see: 180 page of
// https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
#pragma omp declare reduction(+ : paddle::platform::float16 : omp_out += omp_in)
160 161
#pragma omp declare reduction(+ : paddle::platform::bfloat16 : omp_out += \
                              omp_in)
162 163 164 165
#pragma omp declare reduction(+ : paddle::platform::complex64 : omp_out += \
                              omp_in)
#pragma omp declare reduction(+ : paddle::platform::complex128 : omp_out += \
                              omp_in)
166 167 168 169 170
#pragma omp declare reduction(+ : paddle::platform::complex < \
                                  float > : omp_out += omp_in)
#pragma omp declare reduction(+ : paddle::platform::complex < \
                                  double > : omp_out += omp_in)

W
WangXi 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#endif

template <typename T>
static void CheckNanInf(const T* value, const size_t numel, int print_num,
                        const std::string& op_type,
                        const std::string& var_name) {
  T sum = static_cast<T>(0.0);
#if defined _OPENMP && _OPENMP >= 201307
#pragma omp parallel for simd reduction(+ : sum)
#elif defined _OPENMP
#pragma omp parallel for reduction(+ : sum)
#endif
  for (size_t i = 0; i < numel; ++i) {
    sum += (value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}

#if defined _OPENMP && _OPENMP >= 201307
// openmp4.0 not need to specialization fp16
#elif defined _OPENMP
template <>
void CheckNanInf<paddle::platform::float16>(
    const paddle::platform::float16* value, const size_t numel, int print_num,
    const std::string& op_type, const std::string& var_name) {
  float sum = 0.0f;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
#pragma omp parallel for reduction(+ : sum)
  for (size_t i = 0; i < numel; ++i) {
    sum += static_cast<float>(value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}

template <>
void CheckNanInf<paddle::platform::bfloat16>(
    const paddle::platform::bfloat16* value, const size_t numel, int print_num,
    const std::string& op_type, const std::string& var_name) {
  float sum = 0.0f;
W
WangXi 已提交
215 216 217 218 219 220 221 222 223
#pragma omp parallel for reduction(+ : sum)
  for (size_t i = 0; i < numel; ++i) {
    sum += static_cast<float>(value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}
224 225 226 227 228

template <>
void CheckNanInf<paddle::platform::complex64>(
    const paddle::platform::complex64* value, const size_t numel, int print_num,
    const std::string& op_type, const std::string& var_name) {
229 230
  float real_sum = 0.0f;
#pragma omp parallel for reduction(+ : real_sum)
231
  for (size_t i = 0; i < numel; ++i) {
232
    real_sum += (value[i].real - value[i].real);
233 234
  }

235 236 237 238 239 240 241 242 243 244 245 246 247
  float imag_sum = 0.0f;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
        op_type));
248 249 250 251 252 253 254
  }
}

template <>
void CheckNanInf<paddle::platform::complex128>(
    const paddle::platform::complex128* value, const size_t numel,
    int print_num, const std::string& op_type, const std::string& var_name) {
255 256
  double real_sum = 0.0;
#pragma omp parallel for reduction(+ : real_sum)
257
  for (size_t i = 0; i < numel; ++i) {
258
    real_sum += (value[i].real - value[i].real);
259 260
  }

261 262 263 264
  double imag_sum = 0.0;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
265 266
  }

267 268 269 270 271 272 273 274 275
  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
        op_type));
  }
}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

template <>
void CheckNanInf<paddle::platform::complex<float>>(
    const paddle::platform::complex<float>* value, const size_t numel,
    int print_num, const std::string& op_type, const std::string& var_name) {
  float real_sum = 0.0f;
#pragma omp parallel for reduction(+ : real_sum)
  for (size_t i = 0; i < numel; ++i) {
    real_sum += (value[i].real - value[i].real);
  }

  float imag_sum = 0.0f;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
        op_type));
  }
}

template <>
    void CheckNanInf<paddle::platform::complex<double>>>
    (const paddle::platform::complex<double>* value, const size_t numel,
     int print_num, const std::string& op_type, const std::string& var_name) {
  double real_sum = 0.0;
#pragma omp parallel for reduction(+ : real_sum)
  for (size_t i = 0; i < numel; ++i) {
    real_sum += (value[i].real - value[i].real);
  }

  double imag_sum = 0.0;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
        op_type));
  }
}

W
WangXi 已提交
329 330 331 332 333
#endif

template <>
template <typename T>
void TensorCheckerVisitor<platform::CPUDeviceContext>::apply(
334 335 336 337 338
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
W
WangXi 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  // use env strategy control in future, -1=print_all.
  int print_num = 3;
  CheckNanInf(tensor_.data<T>(), tensor_.numel(), print_num, op_type_,
              var_name_);
}

template <>
void tensor_check<platform::CPUDeviceContext>(const std::string& op_type,
                                              const std::string& var_name,
                                              const framework::Tensor& tensor,
                                              const platform::Place& place) {
  TensorCheckerVisitor<platform::CPUDeviceContext> vistor(op_type, var_name,
                                                          tensor, place);
  VisitDataType(tensor.type(), vistor);
}

void CheckVarHasNanOrInf(const std::string& op_type,
                         const framework::Scope& scope,
                         const std::string& var_name,
                         const platform::Place& place) {
  auto* var = scope.FindVar(var_name);
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("In op=%s, can't find var:%s", op_type,
                                      var_name));

  const Tensor* tensor{nullptr};
  if (var->IsType<framework::LoDTensor>()) {
    tensor = &var->Get<framework::LoDTensor>();
  } else if (var->IsType<framework::SelectedRows>()) {
    tensor = &var->Get<framework::SelectedRows>().value();
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

  if (platform::is_gpu_place(tensor->place())) {
383
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
WangXi 已提交
384 385 386 387 388 389
    tensor_check<platform::CUDADeviceContext>(op_type, var_name, *tensor,
                                              place);
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use gpu place. PaddlePaddle must compile with GPU.",
        var_name));
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#endif
    return;
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU
    if (tensor->type() != proto::VarType::FP32) {
      return;
    }

    float* cpu_data = new float[tensor->numel()];
    xpu_memcpy(cpu_data, tensor->data<float>(), tensor->numel() * sizeof(float),
               XPU_DEVICE_TO_HOST);
    bool flag = false;
    for (int i = 0; i < tensor->numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    delete[] cpu_data;
    PADDLE_ENFORCE_NE(
        flag, true,
        platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                                op_type, var_name));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use xpu place. PaddlePaddle must compile with XPU.",
        var_name));
W
WangXi 已提交
417 418
#endif
    return;
419 420 421 422 423 424 425 426 427 428
  } else if (platform::is_npu_place(tensor->place())) {
#ifdef PADDLE_WITH_ASCEND_CL
    if (tensor->type() != proto::VarType::FP32) {
      return;
    }

    framework::LoDTensor cpu_tensor;
    cpu_tensor.Resize(tensor->dims());
    float* cpu_data = static_cast<float*>(
        cpu_tensor.mutable_data(platform::CPUPlace(), tensor->type()));
W
WangXi 已提交
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
    bool flag = false;
    for (int i = 0; i < cpu_tensor.numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    PADDLE_ENFORCE_NE(
        flag, true,
        platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                                op_type, var_name));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use npu place. PaddlePaddle must compile with NPU.",
        var_name));
#endif
    return;
  }
W
WangXi 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
  tensor_check<platform::CPUDeviceContext>(op_type, var_name, *tensor, place);
}

bool IsSkipOp(const framework::OperatorBase& op) {
  if (op_type_nan_inf_white_list().count(op.Type()) != 0) return true;

  int op_role = op.template Attr<int>(
      framework::OpProtoAndCheckerMaker::OpRoleAttrName());

  // kForward=0, can't filter
  if (op_role == static_cast<int>(framework::OpRole::kForward)) {
    op_role = FORWARD;
  }
  if (op_role_nan_inf_white_list & op_role) return true;

  return false;
}

void CheckOpHasNanOrInf(const framework::OperatorBase& op,
                        const framework::Scope& exec_scope,
                        const platform::Place& place) {
  std::call_once(white_list_init_flag, InitWhiteListFormEnv);

  if (IsSkipOp(op)) return;

  if (op_var_nan_inf_white_list().count(op.Type()) == 0) {
    // NOTE. vname may destruct in the end of this func.
    for (auto& vname : op.OutputVars(true)) {
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  } else {
    for (auto& vname : op.OutputVars(true)) {
      bool need_check = true;
      for (auto& white_vname : op_var_nan_inf_white_list().at(op.Type())) {
        if (vname.find(white_vname) != std::string::npos) {
          need_check = false;
          break;
        }
      }
      if (!need_check) continue;
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  }
}

}  // namespace details
}  // namespace framework
}  // namespace paddle