test_digamma_op.py 4.1 KB
Newer Older
Z
zyfncg 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
Z
zyfncg 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Z
zyfncg 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Z
zyfncg 已提交
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

Z
zyfncg 已提交
17
import numpy as np
18
from op_test import OpTest
Z
zyfncg 已提交
19
from scipy.special import psi
20

Z
zyfncg 已提交
21 22 23 24 25 26 27 28 29 30 31
import paddle
import paddle.fluid as fluid
import paddle.static as static


class TestDigammaOp(OpTest):
    def setUp(self):
        # switch to static
        paddle.enable_static()

        self.op_type = 'digamma'
32
        self.python_api = paddle.digamma
Z
zyfncg 已提交
33 34 35 36 37 38 39 40 41 42 43 44
        self.init_dtype_type()
        shape = (5, 32)
        data = np.random.random(shape).astype(self.dtype) + 1
        self.inputs = {'X': data}
        result = np.ones(shape).astype(self.dtype)
        result = psi(data)
        self.outputs = {'Out': result}

    def init_dtype_type(self):
        self.dtype = np.float64

    def test_check_output(self):
45
        self.check_output(check_eager=True)
Z
zyfncg 已提交
46 47

    def test_check_grad_normal(self):
48
        self.check_grad(['X'], 'Out', check_eager=True)
Z
zyfncg 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


class TestDigammaOpFp32(TestDigammaOp):
    def init_dtype_type(self):
        self.dtype = np.float32

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


class TestDigammaAPI(unittest.TestCase):
    def setUp(self):
        # switch to static
        paddle.enable_static()
        # prepare test attrs
        self.dtypes = ["float32", "float64"]
        self.places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))
        self._shape = [8, 3, 32, 32]

    def test_in_static_mode(self):
        def init_input_output(dtype):
            input = np.random.random(self._shape).astype(dtype)
            return {'x': input}, psi(input)

        for dtype in self.dtypes:
            input_dict, sc_res = init_input_output(dtype)
            for place in self.places:
                with static.program_guard(static.Program()):
                    x = static.data(name="x", shape=self._shape, dtype=dtype)
                    out = paddle.digamma(x)

                    exe = static.Executor(place)
                    out_value = exe.run(feed=input_dict, fetch_list=[out.name])
84
                    np.testing.assert_allclose(out_value[0], sc_res, rtol=1e-05)
Z
zyfncg 已提交
85 86 87 88 89 90 91 92 93 94

    def test_in_dynamic_mode(self):
        for dtype in self.dtypes:
            input = np.random.random(self._shape).astype(dtype)
            sc_res = psi(input)
            for place in self.places:
                # it is more convenient to use `guard` than `enable/disable_**` here
                with fluid.dygraph.guard(place):
                    input_t = paddle.to_tensor(input)
                    res = paddle.digamma(input_t).numpy()
95
                    np.testing.assert_allclose(res, sc_res, rtol=1e-05)
Z
zyfncg 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

    def test_name_argument(self):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=self._shape, dtype=self.dtypes[0])
            out = paddle.digamma(x, name="digamma_res")
            self.assertTrue("digamma_res" in out.name)

    def test_dtype_error(self):
        # in static mode
        with self.assertRaises(TypeError):
            with static.program_guard(static.Program()):
                x = static.data(name="x", shape=self._shape, dtype="int32")
                out = paddle.digamma(x, name="digamma_res")

        # in dynamic mode
        with self.assertRaises(RuntimeError):
            with fluid.dygraph.guard():
                input = np.random.random(self._shape).astype("int32")
                input_t = paddle.to_tensor(input)
                res = paddle.digamma(input_t)


if __name__ == "__main__":
    unittest.main()