gpu_info.cc 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
16
#include <algorithm>
S
sneaxiy 已提交
17 18
#include <cstdlib>
#include <string>
L
liaogang 已提交
19

20
#include "gflags/gflags.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/platform/enforce.h"
22
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
23

24
#ifndef _WIN32
P
peizhilin 已提交
25
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
26
#else
P
peizhilin 已提交
27 28 29
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
P
peizhilin 已提交
30
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
31 32
#endif

Z
zhhsplendid 已提交
33 34
constexpr static float fraction_reserve_gpu_memory = 0.05f;

35
DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
X
Xin Pan 已提交
36 37 38 39 40
              "Allocate a trunk of gpu memory that is this fraction of the "
              "total gpu memory size. Future memory usage will be allocated "
              "from the trunk. If the trunk doesn't have enough gpu memory, "
              "additional trunks of the same size will be requested from gpu "
              "until the gpu has no memory left for another trunk.");
L
liaogang 已提交
41

42 43 44 45
DEFINE_uint64(
    initial_gpu_memory_in_mb, 0ul,
    "Allocate a trunk of gpu memory whose byte size is specified by "
    "the flag. Future memory usage will be allocated from the "
46
    "trunk. If the trunk doesn't have enough gpu memory, additional "
47 48 49 50 51 52 53 54 55
    "trunks of the gpu memory will be requested from gpu with size "
    "specified by FLAGS_reallocate_gpu_memory_in_mb until the gpu has "
    "no memory left for the additional trunk. Note: if you set this "
    "flag, the memory size set by "
    "FLAGS_fraction_of_gpu_memory_to_use will be overrided by this "
    "flag. If you don't set this flag, PaddlePaddle will use "
    "FLAGS_fraction_of_gpu_memory_to_use to allocate gpu memory");

DEFINE_uint64(reallocate_gpu_memory_in_mb, 0ul,
Z
zhhsplendid 已提交
56 57 58 59
              "If this flag is set, Paddle will reallocate the gpu memory with "
              "size specified by this flag. Else Paddle will reallocate by "
              "FLAGS_fraction_of_gpu_memory_to_use");

60 61 62 63 64 65 66 67 68 69
DEFINE_bool(
    enable_cublas_tensor_op_math, false,
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

70 71 72 73 74 75 76 77 78
DEFINE_string(selected_gpus, "",
              "A list of device ids separated by comma, like: 0,1,2,3. "
              "This option is useful when doing multi process training and "
              "each process have only one device (GPU). If you want to use "
              "all visible devices, set this to empty string. NOTE: the "
              "reason of doing this is that we want to use P2P communication"
              "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
              "share-memory only.");

L
liaogang 已提交
79 80 81
namespace paddle {
namespace platform {

82 83 84 85 86 87
inline std::string CudaErrorWebsite() {
  return "Please see detail in https://docs.nvidia.com/cuda/cuda-runtime-api"
         "/group__CUDART__TYPES.html#group__CUDART__TYPES_1g3f51e3575c217824"
         "6db0a94a430e0038";
}

S
sneaxiy 已提交
88 89 90 91 92 93 94
static int GetCUDADeviceCountImpl() {
  const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES");
  if (cuda_visible_devices != nullptr) {
    std::string cuda_visible_devices_str(cuda_visible_devices);
    if (std::all_of(cuda_visible_devices_str.begin(),
                    cuda_visible_devices_str.end(),
                    [](char ch) { return ch == ' '; })) {
S
sneaxiy 已提交
95
      VLOG(2) << "CUDA_VISIBLE_DEVICES is set to be empty. No GPU detected.";
S
sneaxiy 已提交
96 97 98 99
      return 0;
    }
  }

L
liaogang 已提交
100
  int count;
101
  auto error_code = cudaGetDeviceCount(&count);
L
liaogang 已提交
102
  PADDLE_ENFORCE(
103 104 105 106
      error_code,
      "cudaGetDeviceCount failed in "
      "paddle::platform::GetCUDADeviceCountImpl, error code : %d, %s",
      error_code, CudaErrorWebsite());
L
liaogang 已提交
107 108 109
  return count;
}

S
sneaxiy 已提交
110 111 112 113 114
int GetCUDADeviceCount() {
  static auto dev_cnt = GetCUDADeviceCountImpl();
  return dev_cnt;
}

115 116 117
int GetCUDAComputeCapability(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  cudaDeviceProp device_prop;
118 119 120 121 122 123
  auto error_code = cudaGetDeviceProperties(&device_prop, id);
  PADDLE_ENFORCE(
      error_code,
      "cudaGetDeviceProperties failed in "
      "paddle::platform::GetCUDAComputeCapability, error code : %d, %s",
      error_code, CudaErrorWebsite());
124 125 126
  return device_prop.major * 10 + device_prop.minor;
}

C
chengduo 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
int GetCUDARuntimeVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int runtime_version = 0;
  PADDLE_ENFORCE(cudaRuntimeGetVersion(&runtime_version),
                 "cudaRuntimeGetVersion failed in "
                 "paddle::platform::cudaRuntimeGetVersion");
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int driver_version = 0;
  PADDLE_ENFORCE(cudaDriverGetVersion(&driver_version),
                 "cudaDriverGetVersion failed in "
                 "paddle::platform::GetCUDADriverVersion");
  return driver_version;
}

145 146 147 148 149 150 151 152 153 154
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
155 156 157
int GetCUDAMultiProcessors(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
158 159 160 161 162 163
  auto error_code =
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id);
  PADDLE_ENFORCE(error_code,
                 "cudaDeviceGetAttribute failed in "
                 "paddle::platform::GetCUDAMultiProcess, error code : %d, %s",
                 error_code, CudaErrorWebsite());
C
chengduoZH 已提交
164 165 166 167 168 169
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
170 171 172 173 174 175 176
  auto error_code = cudaDeviceGetAttribute(
      &count, cudaDevAttrMaxThreadsPerMultiProcessor, id);
  PADDLE_ENFORCE(
      error_code,
      "cudaDeviceGetAttribute failed in paddle::"
      "platform::GetCUDAMaxThreadsPerMultiProcessor, error code : %d, %s",
      error_code, CudaErrorWebsite());
C
chengduoZH 已提交
177 178 179
  return count;
}

L
liaogang 已提交
180 181
int GetCurrentDeviceId() {
  int device_id;
L
liaogang 已提交
182
  PADDLE_ENFORCE(
L
liaogang 已提交
183 184 185 186 187
      cudaGetDevice(&device_id),
      "cudaGetDevice failed in paddle::platform::GetCurrentDeviceId");
  return device_id;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
206
void SetDeviceId(int id) {
Q
qijun 已提交
207
  // TODO(qijun): find a better way to cache the cuda device count
Y
Yang Yang 已提交
208
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
L
liaogang 已提交
209
  PADDLE_ENFORCE(cudaSetDevice(id),
L
liaogang 已提交
210 211 212
                 "cudaSetDevice failed in paddle::platform::SetDeviceId");
}

213 214
void GpuMemoryUsage(size_t *available, size_t *total) {
  PADDLE_ENFORCE(cudaMemGetInfo(available, total),
L
liaogang 已提交
215 216 217
                 "cudaMemGetInfo failed in paddle::platform::GetMemoryUsage");
}

218
size_t GpuAvailableMemToAlloc() {
L
liaogang 已提交
219 220
  size_t total = 0;
  size_t available = 0;
221
  GpuMemoryUsage(&available, &total);
222 223 224 225 226 227 228 229 230 231 232
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
Z
zhhsplendid 已提交
233 234
}

235 236 237
size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}
Z
zhhsplendid 已提交
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(available_to_alloc, 0, "No enough available GPU memory");
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
  PADDLE_ENFORCE_GE(available_to_alloc, alloc_bytes,
                    "No enough available GPU memory");
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}
Z
zhhsplendid 已提交
255

256
size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }
Z
zhhsplendid 已提交
257

258
size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }
L
liaogang 已提交
259

L
liaogang 已提交
260 261 262 263 264 265
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
266 267 268
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
L
liaogang 已提交
269 270
}

L
liaogang 已提交
271 272
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
273 274
  auto error_code = cudaMemcpyAsync(dst, src, count, kind, stream);
  PADDLE_ENFORCE(error_code,
275
                 "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync "
276 277 278
                 "(%p -> %p, length: %d) error code : %d, %s",
                 src, dst, static_cast<int>(count), error_code,
                 CudaErrorWebsite());
L
liaogang 已提交
279 280
}

281 282
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
283 284 285 286 287 288
  auto error_code = cudaMemcpy(dst, src, count, kind);
  PADDLE_ENFORCE(error_code,
                 "cudaMemcpy failed in paddle::platform::GpuMemcpySync "
                 "(%p -> %p, length: %d) error code : %d, %s",
                 src, dst, static_cast<int>(count), error_code,
                 CudaErrorWebsite());
289 290 291 292
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
293 294
  auto error_code =
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream);
L
liaogang 已提交
295
  PADDLE_ENFORCE(
296 297 298 299
      error_code,
      "cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync "
      "error code : %d, %s",
      error_code, CudaErrorWebsite());
300 301 302 303
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
304 305 306 307 308
  auto error_code = cudaMemcpyPeer(dst, dst_device, src, src_device, count);
  PADDLE_ENFORCE(error_code,
                 "cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync "
                 "error code : %d, %s",
                 error_code, CudaErrorWebsite());
L
liaogang 已提交
309
}
D
dzhwinter 已提交
310 311

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
312 313 314 315 316
  auto error_code = cudaMemsetAsync(dst, value, count, stream);
  PADDLE_ENFORCE(error_code,
                 "cudaMemsetAsync failed in paddle::platform::GpuMemsetAsync "
                 "error code : %d, %s",
                 error_code, CudaErrorWebsite());
D
dzhwinter 已提交
317
}
L
liaogang 已提交
318 319
}  // namespace platform
}  // namespace paddle