test_collective_api_base.py 19.7 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import sys
import subprocess
import traceback
import functools
import pickle
26
import tempfile
27
from contextlib import closing
28
import paddle
29 30 31 32 33 34
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


class TestCollectiveAPIRunnerBase(object):
35

L
lilong12 已提交
36
    def get_model(self, train_prog, startup_prog, rank, indata=None):
37 38 39 40 41 42 43 44 45 46
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
47
        paddle.distributed.init_parallel_env()
48 49 50 51
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
52 53 54
        elif args['backend'] == 'bkcl':
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
55 56 57
        else:
            place = fluid.CPUPlace()
        np.random.seed(os.getpid())
58
        indata = np.random.random((10, 1000)).astype("float32")
L
lilong12 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
        if args['static_mode']:
            result = self.get_model(train_prog, startup_prog, rank)
            exe = fluid.Executor(place)
            exe.run(startup_prog)
            fetch_list = []
            for elem in result:
                fetch_list.append(elem.name)
            out = exe.run(train_prog,
                          feed={'tindata': indata},
                          fetch_list=fetch_list)
        else:
            out = self.get_model(train_prog, startup_prog, rank, indata)
            #print(out, sys.stderr)
T
tianshuo78520a 已提交
72
        sys.stdout.buffer.write(pickle.dumps(out))
73 74 75 76 77 78 79 80 81 82 83 84


def runtime_main(test_class, col_type):
    args = {}
    model = test_class()
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    args["backend"] = os.getenv("BACKEND")
    args["path_id"] = int(os.getenv("PATH_ID"))
L
lilong12 已提交
85
    args["static_mode"] = int(os.getenv("STATIC_MODE"))
86 87 88 89 90 91 92 93 94
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
95

96 97 98 99 100 101 102
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

103 104 105 106 107
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

108
    def _find_free_port(self):
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        if core.is_compiled_with_cuda():
            env0 = {
                "FLAGS_selected_gpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_gpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
        elif core.is_compiled_with_xpu():
            env0 = {
                "FLAGS_selected_xpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_xpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
158 159 160
        #update environment
        env0.update(envs)
        env1.update(envs)
161 162 163 164
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd = "%s -m coverage run --branch -p %s"
        else:
            tr_cmd = "%s %s"
165 166
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
167 168 169 170 171 172
        path0 = os.path.join(self.temp_dir.name,
                             "/tmp/tr0_err_%d.log" % os.getpid())
        path1 = os.path.join(self.temp_dir.name,
                             "/tmp/tr1_err_%d.log" % os.getpid())
        tr0_pipe = open(path0, "w")
        tr1_pipe = open(path1, "w")
173 174 175 176 177 178 179 180 181 182
        #print(tr0_cmd)
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)

        tr1_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
183 184 185 186 187 188 189 190

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
191
        with open(path0, "r") as f:
192
            sys.stderr.write('trainer 0 stderr file: %s\n' % f.read())
193
        with open(path1, "r") as f:
194
            sys.stderr.write('trainer 1 stderr file: %s\n' % f.read())
195 196 197 198 199 200 201 202
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         backend="nccl",
                         path_id="0",
L
lilong12 已提交
203
                         static_mode="1",
204
                         check_error_log=False,
205 206
                         need_envs={},
                         eager_mode=True):
207 208 209 210
        if backend == "nccl" or backend == "bkcl":
            with_gloo = '0'
        else:
            with_gloo = '1'
211 212 213 214 215 216 217
        required_envs = {
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_eager_delete_tensor_gb": "0.0",
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
L
lilong12 已提交
218 219
            "FLAGS_call_stack_level": "2",
            "GLOG_v": "3",
220
            "NCCL_P2P_DISABLE": "1",
L
lilong12 已提交
221
            "STATIC_MODE": static_mode,
L
lilong12 已提交
222
            "PADDLE_WITH_GLOO": with_gloo,
223 224 225 226 227 228 229
            "BACKEND": backend,
            "PATH_ID": path_id
        }
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
230
            required_envs["GLOO_LOG_LEVEL"] = "TRACE"
231

232 233 234 235
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
                'NVIDIA_TF32_OVERRIDE', '')

236 237
        if eager_mode:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 1
238 239
        else:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 0
240

241 242
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(
            model_file, required_envs)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        np.random.seed(pid0)
        input1 = np.random.random((10, 1000))
        np.random.seed(pid1)
        input2 = np.random.random((10, 1000))
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            tr_out0 = np.vstack((tr0_out[0], tr0_out[1]))
            tr_out1 = np.vstack((tr1_out[0], tr1_out[1]))
            self.assertTrue(np.allclose(tr_out0, need_result))
            self.assertTrue(np.allclose(tr_out1, need_result))
        elif col_type == "broadcast":
            need_result = input2
            self.assertTrue(np.allclose(tr0_out, need_result))
            self.assertTrue(np.allclose(tr1_out, need_result))
        elif col_type == "reduce":
            need_result = input1 + input2
            self.assertTrue(np.allclose(tr0_out, need_result))
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
            self.assertTrue(np.allclose(tr0_out, need_result1))
            self.assertTrue(np.allclose(tr1_out, need_result2))
        elif col_type == "allreduce":
            need_result = input1 + input2
            self.assertTrue(
269
                np.allclose(tr0_out, need_result, rtol=1e-05, atol=1e-05))
270
            self.assertTrue(
271
                np.allclose(tr1_out, need_result, rtol=1e-05, atol=1e-05))
272 273 274
        elif col_type == "parallel_embedding":
            result_data = tr0_out[0]
            np.random.seed(2020)
275
            need_result = np.random.rand(12, 8)
276 277 278
            for i in range(result_data.shape[0]):
                for j in range(result_data.shape[1]):
                    data = result_data[i][j]
279 280 281
                    assert np.allclose(tr0_out[1][i][j],
                                       need_result[data],
                                       atol=1e-08)
282 283 284 285 286 287
        elif col_type == "row_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
            self.assertTrue(
288
                np.allclose(result_data, need_result, rtol=1e-05, atol=1e-05))
289 290 291 292 293 294
        elif col_type == "column_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
            self.assertTrue(
295
                np.allclose(result_data, need_result, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
296 297 298 299 300 301 302 303
        elif col_type == "alltoall":
            need_result1 = np.vstack((input1[0:input1.shape[0] // 2, :],
                                      input2[0:input2.shape[0] // 2, :]))
            need_result2 = np.vstack((input1[input1.shape[0] // 2:, :],
                                      input2[input2.shape[0] // 2:, :]))
            tr0_out = np.vstack(tr0_out)
            tr1_out = np.vstack(tr1_out)
            self.assertTrue(
304
                np.allclose(tr0_out, need_result1, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
305
            self.assertTrue(
306
                np.allclose(tr1_out, need_result2, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
307 308 309
        elif col_type == "sendrecv":
            result_data = tr1_out[0]
            self.assertTrue(
310
                np.allclose(input1, result_data, rtol=1e-05, atol=1e-05))
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        elif col_type == "global_gather":
            in_feat = 2
            n_expert = 2
            world_size = 2
            tot_expert = n_expert * world_size

            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr1 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, tot_expert):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]

            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr2 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, tot_expert):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            global_expert_count1 = np.zeros(tot_expert).astype("int")
            global_expert_count2 = np.zeros(tot_expert).astype("int")
            global_expert_count1[0:n_expert] = local_expert_count1[0:n_expert]
            global_expert_count1[n_expert:] = local_expert_count2[0:n_expert]
            global_expert_count2[0:n_expert] = local_expert_count1[n_expert:]
            global_expert_count2[n_expert:] = local_expert_count2[n_expert:]

            np.random.seed(pid0)
            fwd_expert_count = sum(global_expert_count1).astype("int")
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            np.random.seed(pid1)
            fwd_expert_count = sum(global_expert_count2).astype("int")
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            output1 = [[], [], [], []]
            output2 = [[], [], [], []]
            send_ptr1 = 0
            send_ptr2 = 0

            for i in range(n_expert):
                for j in range(world_size):
                    idx = j * n_expert + i
                    if j == 0:
                        output1_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx], :]
                        output1_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx], :]
                        output1[i].extend(output1_part1)
                        output1[i + n_expert].extend(output1_part2)
                    else:
                        output2_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx]]
                        output2_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx]]
                        output2[i].extend(output2_part1)
                        output2[i + n_expert].extend(output2_part2)
                    send_ptr1 = send_ptr1 + global_expert_count1[idx]
                    send_ptr2 = send_ptr2 + global_expert_count2[idx]
            result1 = []
            result2 = []
            for i in range(tot_expert):
                for arr in output1[i]:
                    if arr == []:
                        continue
                    result1.append(arr)
            for i in range(tot_expert):
                for arr in output2[i]:
                    if arr == []:
                        continue
                    result2.append(arr)
            if result1 == []:
                output1 = np.array([])
            else:
387 388
                output1 = np.concatenate(result1, axis=0).reshape(
                    sum(local_expert_count1), in_feat)
389 390 391
            if result2 == []:
                output2 = np.array([])
            else:
392 393
                output2 = np.concatenate(result2, axis=0).reshape(
                    sum(local_expert_count2), in_feat)
394 395 396 397 398 399 400 401

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

            self.assertTrue(
402
                np.allclose(tr0_out[0], output1, rtol=1e-05, atol=1e-05))
403
            self.assertTrue(
404
                np.allclose(tr1_out[0], output2, rtol=1e-05, atol=1e-05))
405 406
            if static_mode == 0:
                self.assertTrue(
407 408 409 410
                    np.allclose(tr0_out[1],
                                2 * local_input_buf1,
                                rtol=1e-05,
                                atol=1e-05))
411
                self.assertTrue(
412 413 414 415
                    np.allclose(tr1_out[1],
                                2 * local_input_buf2,
                                rtol=1e-05,
                                atol=1e-05))
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

        elif col_type == "global_scatter":
            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count1)
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr1 = np.ones(4, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, 4):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]
            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count2)
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr2 = np.ones(4, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, 4):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            output1 = []
            output2 = []
            for i in range(2):
                for j in range(2):
                    idx = j * 2 + i
                    if j == 0:
                        # send data to 0 card
                        output1.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output1.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
                    else:
                        output2.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output2.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
            if output1 == []:
                output1 = np.array([])
            else:
                output1 = np.concatenate(output1)
            if output2 == []:
                output2 = np.array([])
            else:
                output2 = np.concatenate(output2)

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

            self.assertTrue(
469
                np.allclose(tr0_out[0], output1, rtol=1e-05, atol=1e-05))
470
            self.assertTrue(
471
                np.allclose(tr1_out[0], output2, rtol=1e-05, atol=1e-05))
472 473
            if static_mode == 0:
                self.assertTrue(
474 475 476 477
                    np.allclose(tr0_out[1],
                                2 * local_input_buf1,
                                rtol=1e-05,
                                atol=1e-05))
478
                self.assertTrue(
479 480 481 482
                    np.allclose(tr1_out[1],
                                2 * local_input_buf2,
                                rtol=1e-05,
                                atol=1e-05))
483 484
        else:
            pass