model_parser.cc 7.8 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
update  
superjomn 已提交
15
#include "paddle/fluid/lite/model_parser/model_parser.h"
S
superjomn 已提交
16
#include <algorithm>
S
update  
superjomn 已提交
17
#include <fstream>
S
superjomn 已提交
18
#include <limits>
19
#include "paddle/fluid/lite/core/compatible_tensor.h"
S
update  
superjomn 已提交
20 21
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/core/variable.h"
S
update  
superjomn 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace lite {

int SizeOfType(framework::proto::VarType::Type type) {
  using Type = framework::proto::VarType::Type;
  switch (static_cast<int>(type)) {
#define DO(desc, type)            \
  case Type::VarType_Type_##desc: \
    return sizeof(type);
    DO(BOOL, bool);
    DO(FP16, float);
    DO(FP32, float);
    DO(INT8, int8_t);
    DO(INT32, int);
    DO(INT64, int64_t);
#undef DO
    default:
S
Superjomn 已提交
40
      LOG(FATAL) << "unknown data type " << type;
S
update  
superjomn 已提交
41
  }
S
Superjomn 已提交
42
  return -1;
S
update  
superjomn 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
}

void TensorFromStream(std::istream &is, lite::Tensor *tensor) {
  using Type = framework::proto::VarType::Type;
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  CHECK_EQ(version, 0U) << "Only version 0 is supported";
  // read tensor desc
  framework::proto::VarType::TensorDesc desc;
  {
    // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char *>(buf.get()), size);
    CHECK(desc.ParseFromArray(buf.get(), size)) << "Cannot parse tensor desc";
  }

  // read tensor
63 64 65 66 67
  std::vector<int64_t> dims_vec;
  std::copy(desc.dims().begin(), desc.dims().end(),
            std::back_inserter(dims_vec));
  lite::DDim dims(dims_vec);
  tensor->Resize(dims);
S
update  
superjomn 已提交
68
  void *buf;
69
  size_t size = tensor->dims().production() * SizeOfType(desc.data_type());
S
update  
superjomn 已提交
70 71
  // alllocate memory
  switch (static_cast<int>(desc.data_type())) {
72 73 74
#define DO(desc, type)                  \
  case Type::VarType_Type_##desc:       \
    buf = tensor->mutable_data<type>(); \
S
update  
superjomn 已提交
75
    break;
76
    // DO(BOOL, bool);
S
update  
superjomn 已提交
77 78 79 80 81 82 83
    DO(FP32, float);
    DO(INT8, int8_t);
    DO(INT16, int16_t);
    DO(INT32, int32_t);
    DO(INT64, int64_t);
#undef DO
    default:
84
      LOG(FATAL) << "unknown type " << desc.data_type();
S
update  
superjomn 已提交
85 86 87 88 89 90 91
  }

  is.read(static_cast<char *>(buf), size);
}

void LoadLoDTensor(std::istream &is, Variable *var) {
  auto *tensor = var->GetMutable<lite::Tensor>();
S
Superjomn 已提交
92
  uint32_t version{};
S
update  
superjomn 已提交
93 94 95 96
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  LOG(INFO) << "model version " << version;

  // Load LoD information
S
Superjomn 已提交
97
  uint64_t lod_level{};
S
update  
superjomn 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    lod[i] = tmp;
  }

  TensorFromStream(is, tensor);
}

// TODO(Superjomn) support SelectedRows.

void ReadBinaryFile(const std::string &filename, std::string *contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  CHECK(fin.is_open()) << "Cannot open file " << filename;
  fin.seekg(0, std::ios::end);
  auto size = fin.tellg();
  contents->clear();
  contents->resize(size);
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

std::unique_ptr<framework::proto::ProgramDesc> LoadProgram(
    const std::string &path) {
  std::string desc_str;
  ReadBinaryFile(path, &desc_str);
  std::unique_ptr<framework::proto::ProgramDesc> main_program(
      new framework::proto::ProgramDesc);
  main_program->ParseFromString(desc_str);
  return main_program;
}

void LoadParams(const std::string &path) {}

C
update  
Chunwei 已提交
139 140 141
// Load directly to CPU, and latter transfer to other devices.
void LoadParam(const std::string &path, Variable *out) {
  std::ifstream fin(path, std::ios::binary);
S
Superjomn 已提交
142
  CHECK(fin.is_open()) << "failed to open file " << path;
C
update  
Chunwei 已提交
143 144 145
  LoadLoDTensor(fin, out);
}

S
superjomn 已提交
146 147
void LoadModel(const std::string &model_dir, Scope *scope,
               framework::proto::ProgramDesc *prog) {
S
update  
superjomn 已提交
148
  const std::string prog_path = model_dir + "/__model__";
S
superjomn 已提交
149
  *prog = *LoadProgram(prog_path);
S
update  
superjomn 已提交
150 151 152

  auto main_block = prog->blocks(0);
  for (auto &var : main_block.vars()) {
S
superjomn 已提交
153 154 155
    if (var.name() == "feed" || var.name() == "fetch" || !var.persistable())
      continue;

S
update  
superjomn 已提交
156
    std::string file_path = model_dir + "/" + var.name();
S
superjomn 已提交
157 158
    LOG(INFO) << "reading weight " << var.name();

S
update  
superjomn 已提交
159
    std::ifstream file(file_path);
S
superjomn 已提交
160 161 162 163 164 165 166
    switch (var.type().type()) {
      case framework::proto::VarType_Type_LOD_TENSOR:
        LoadLoDTensor(file, scope->Var(var.name()));
        break;
      default:
        CHECK(false) << "unknown weight type";
    }
S
update  
superjomn 已提交
167 168
  }
}
S
superjomn 已提交
169

S
Superjomn 已提交
170
void TensorToStream(std::ostream &os, const lite::Tensor &tensor) {
S
Superjomn 已提交
171 172 173
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));
S
Superjomn 已提交
174 175

  {
S
Superjomn 已提交
176
    uint64_t size = tensor.lod().size();
S
Superjomn 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : tensor.lod()) {
      size = each.size() * sizeof(each.front());
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }

S
Superjomn 已提交
192 193 194
  // There are two version fields in a LoDTensor.
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

S
Superjomn 已提交
195 196 197 198
  {  // the 2nd field, tensor description
    // int32_t  size
    // void*    protobuf message
    framework::proto::VarType::TensorDesc desc;
S
Superjomn 已提交
199 200
    // TODO(Superjomn) support other data types.
    desc.set_data_type(framework::proto::VarType_Type_FP32);
S
Superjomn 已提交
201 202 203
    auto dims = tensor.dims();
    auto *pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
204
    auto dims_vec = dims.Vectorize();
205
    std::copy(dims_vec.begin(), dims_vec.end(), pb_dims->begin());
S
Superjomn 已提交
206 207 208 209 210 211
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
212
    uint64_t size = tensor.data_size();
S
Superjomn 已提交
213 214 215 216
    CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
        << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
217
    if (tensor.target() == TARGET(kCUDA)) {
S
Superjomn 已提交
218
      std::unique_ptr<char> tmp_buffer(new char[size]);
219
      TargetWrapperCuda::MemcpySync(tmp_buffer.get(), tensor.data<float>(),
220
                                    tensor.data_size(), IoDirection::DtoH);
S
Superjomn 已提交
221 222
      os.write(static_cast<const char *>(tmp_buffer.get()),
               static_cast<std::streamsize>(size));
S
superjomn 已提交
223 224
    } else  // NOLINT
#endif      // LITE_WITH_CUDA
S
Superjomn 已提交
225 226 227 228 229 230 231
    {
      os.write(static_cast<const char *>(tensor.data<void>()),
               static_cast<std::streamsize>(size));
    }
  }
}

S
Superjomn 已提交
232 233
void SerializeTensor(std::ostream &os, const lite::Scope &scope,
                     const std::string &var_name) {
S
Superjomn 已提交
234
  // Store all the persistable vars.
S
Superjomn 已提交
235 236 237
  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();
  TensorToStream(os, tensor);
S
Superjomn 已提交
238 239
}

S
update  
superjomn 已提交
240 241
}  // namespace lite
}  // namespace paddle