box_coder_op.h 7.0 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };

inline BoxCodeType GetBoxCodeType(const std::string& type) {
  if (type == "encode_center_size") {
    return BoxCodeType::kEncodeCenterSize;
  } else if (type == "decode_center_size") {
    return BoxCodeType::kDecodeCenterSize;
  }
  PADDLE_THROW("Not support type %s.", type);
}

template <typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
 public:
  void EncodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
                        const Tensor& prior_box_var, T* output) const {
    PADDLE_ENFORCE_EQ(target_box.dims().size(), 2,
                      "The rank of target_box must be 2.");
    PADDLE_ENFORCE_EQ(prior_box.dims().size(), 2,
                      "The rank of prior_box must be 2.");
    PADDLE_ENFORCE_EQ(prior_box_var.dims().size(), 2,
                      "The rank of prior_box_var must be 2.");
    PADDLE_ENFORCE_EQ(prior_box.dims()[0], prior_box_var.dims()[0],
                      "The dims of prior_box must equal to prior_box_var.");

    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
        T prior_box_width = prior_box_data[j * 4 + 2] - prior_box_data[j * 4];
        T prior_box_height =
            prior_box_data[j * 4 + 3] - prior_box_data[j * 4 + 1];
        T prior_box_center_x =
            (prior_box_data[j * 4 + 2] + prior_box_data[j * 4]) / 2;
        T prior_box_center_y =
            (prior_box_data[j * 4 + 3] + prior_box_data[j * 4 + 1]) / 2;

        T target_box_center_x =
            (target_box_data[i * 4 + 2] + target_box_data[i * 4]) / 2;
        T target_box_center_y =
            (target_box_data[i * 4 + 3] + target_box_data[i * 4 + 1]) / 2;
        T target_box_width =
            target_box_data[i * 4 + 2] - target_box_data[i * 4];
        T target_box_height =
            target_box_data[i * 4 + 3] - target_box_data[i * 4 + 1];

        size_t offset = i * col * 4 + j * 4;
        output[offset] = (target_box_center_x - prior_box_center_x) /
                         prior_box_width / prior_box_var_data[j * 4];
        output[offset + 1] = (target_box_center_y - prior_box_center_y) /
                             prior_box_height / prior_box_var_data[j * 4 + 1];
        output[offset + 2] =
            std::log(std::fabs(target_box_width / prior_box_width)) /
            prior_box_var_data[j * 4 + 2];
        output[offset + 3] =
            std::log(std::fabs(target_box_height / prior_box_height)) /
            prior_box_var_data[j * 4 + 3];
      }
    }
  }
  void DecodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
                        const Tensor& prior_box_var, T* output) const {
    PADDLE_ENFORCE_EQ(target_box.dims().size(), 2,
                      "The rank of target_box must be 2.");
    PADDLE_ENFORCE_EQ(prior_box.dims().size(), 2,
                      "The rank of prior_box must be 2.");
    PADDLE_ENFORCE_EQ(prior_box_var.dims().size(), 2,
                      "The rank of prior_box_var must be 2.");
    PADDLE_ENFORCE_EQ(prior_box.dims()[0], prior_box_var.dims()[0],
                      "The dims of prior_box must equal to prior_box_var.");

    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];

    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
        T prior_box_width = prior_box_data[j * 4 + 2] - prior_box_data[j * 4];
        T prior_box_height =
            prior_box_data[j * 4 + 3] - prior_box_data[j * 4 + 1];
        T prior_box_center_x =
            (prior_box_data[j * 4 + 2] + prior_box_data[j * 4]) / 2;
        T prior_box_center_y =
            (prior_box_data[j * 4 + 3] + prior_box_data[j * 4 + 1]) / 2;

        T target_box_center_x = prior_box_var_data[j * 4] *
                                    target_box_data[i * 4] * prior_box_width +
                                prior_box_center_x;
        T target_box_center_y = prior_box_var_data[j * 4 + 1] *
                                    target_box_data[i * 4 + 1] *
                                    prior_box_height +
                                prior_box_center_y;
        T target_box_width = std::exp(prior_box_var_data[j * 4 + 2] *
                                      target_box_data[i * 4 + 2]) *
                             prior_box_width;
        T target_box_height = std::exp(prior_box_var_data[j * 4 + 3] *
                                       target_box_data[i * 4 + 3]) *
                              prior_box_height;

        size_t offset = i * col * 4 + j * 4;
        output[offset] = target_box_center_x - target_box_width / 2;
        output[offset + 1] = target_box_center_y - target_box_height / 2;
        output[offset + 2] = target_box_center_x + target_box_width / 2;
        output[offset + 3] = target_box_center_y + target_box_height / 2;
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
    auto* output_box = context.Output<Tensor>("OutputBox");

    if (target_box->lod().size()) {
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];

    output_box->mutable_data<T>({row, col, 4}, context.GetPlace());

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    T* output = output_box->data<T>();
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    }
  }
};

}  // namespace operators
}  // namespace paddle