geo_sgd_transpiler.py 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. create delta variable in global scope which used to send
3. add send op to send sparse ids to communicator

Steps to transpile pserver:
1. create new program for parameter server.
2. create params variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append sum ops that should run on current server instance.
5. add listen_and_serv op
"""
import sys
import collections
import six
import numpy as np

from .ps_dispatcher import RoundRobin, PSDispatcher
from .. import core, framework
from ..framework import Program, default_main_program, \
    default_startup_program, Block, Parameter
from .details import wait_server_ready, VarsDistributed
from .details import delete_ops
from ..distribute_lookup_table import find_distributed_lookup_table
from .distribute_transpiler import DistributeTranspiler, DistributeTranspilerConfig, slice_variable, same_or_split_var

RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC


class GeoSgdTranspiler(DistributeTranspiler):
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=False,
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
        if program is None:
            program = default_main_program()
        if startup_program is None:
            startup_program = default_startup_program()
        self.origin_program = program
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()

        self.trainer_num = trainers
        # geo-sgd only supply async-mode
        self.sync_mode = False
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.vars_overview = VarsDistributed()
        self.optimize_ops, self.params_grads = self._get_optimize_pass()
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
        self.param_name_to_grad_name = dict()
        self.grad_name_to_param_name = dict()
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
            self.grad_name_to_param_name[grad_var.name] = param_var.name

        # distribute lookup table
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._ps_endpoint = current_endpoint
        self.origin_program._is_chief = self.trainer_id == 0

        # program info send to geo-sgd communicator
        self.vars_info = collections.OrderedDict()
        self.split_to_origin_mapping = collections.OrderedDict()
        self.delta_vars_list = []
        self.sparse_var_list = []
        self.sparse_var_splited_list = []

        # split and create vars, then put splited vars in dicts for later use.
        # step 1. split and create vars, then put splited vars in dicts for later use.
        self._init_splited_vars()

        # step 3. create send recv var (param after optimize)
        send_vars = []
        ps_dispatcher.reset()
        param_var_mapping_items = list(six.iteritems(self.param_var_mapping))
        # send_vars is the parameter which splited by communicator and send to pserver,not the origin parameter
        for _, splited_vars in param_var_mapping_items:
            for _, var in enumerate(splited_vars):
                send_vars.append(var)

        recv_vars = send_vars

        ps_dispatcher.reset()
        eplist = ps_dispatcher.dispatch(recv_vars)
        for i, ep in enumerate(eplist):
            self.param_opt_ep_mapping[ep]["params"].append(recv_vars[i])
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep
            origin_name = self.split_to_origin_mapping[recv_vars[i].name]
            self.vars_info[origin_name]["epmap"].append(ep)
        self.origin_program._parameters_on_pservers = self.vars_overview

        # send sparse id to communicator
        self.sparse_var = []
        self.sparse_tables = []
        for op in self.origin_program.global_block().ops:
            if op.type == "lookup_table":
                op._set_attr('remote_prefetch', False)
                for input_var_name, sparse_var_name in zip(
                        op.input("Ids"), op.input("W")):
                    if sparse_var_name in self.sparse_var_list:
                        input_var = program.global_block().var(input_var_name)
                        self.sparse_var.append(input_var)
                        self.sparse_tables.append(sparse_var_name)

        # batch training loop end flag
        dummy_output = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        program.global_block().append_op(
            type="send",
            inputs={"X": self.sparse_var},
            outputs={"Out": dummy_output},
            attrs={"send_varnames": self.sparse_tables})

        # add param_init flag in trainer startup program
        self.trainer_startup_program = self._get_trainer_startup_program(
            recv_vars=recv_vars, eplist=eplist)
        for delta_var in self.delta_vars_list:
            self.trainer_startup_program.global_block().create_var(
                name=delta_var.name,
                persistable=delta_var.persistable,
                dtype=delta_var.dtype,
                type=delta_var.type,
                shape=delta_var.shape)
        dummy_output = self.trainer_startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        param_init = self.trainer_startup_program.global_block().create_var(
            name="param_init")
        self.trainer_startup_program.global_block().append_op(
            type="send",
            inputs={"X": [param_init]},
            outputs={"Out": dummy_output},
            attrs={"send_varnames": [param_init.name]})

    def _get_vars_info(self):
        return self.vars_info

    def get_trainer_program(self, wait_port=True):
        # if wait_port:
        #     wait_server_ready(self.pserver_endpoints)
        return self.origin_program

    def get_pserver_programs(self, endpoint):
        pserver_prog = self.get_pserver_program(endpoint)
        self.param_grad_ep_mapping = self.param_opt_ep_mapping
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
        return pserver_prog, pserver_startup

    def get_pserver_program(self, endpoint):
        # step1
        pserver_program = Program()
        pserver_program.random_seed = self.origin_program.random_seed
        pserver_program._copy_dist_param_info_from(self.origin_program)

        # step2: Create vars to receive vars at parameter servers.
        recv_inputs = []
        for v in self.param_opt_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)

        optimize_block = []
        param_to_block_id = []
        sparse_grad_to_param = []

        # append op to the current block
        pre_block_idx = pserver_program.num_blocks - 1
        for var in self.param_opt_ep_mapping[endpoint]["params"]:
            per_opt_block = pserver_program._create_block(pre_block_idx)
            optimize_block.append(per_opt_block)
            var_name = var.name
            pserver_block = per_opt_block.program.global_block()
            param = pserver_block.vars[var_name]

            delta_var_name = "%s.delta" % (param.name)
            if var.name in self.sparse_var_splited_list:
                delta_type = core.VarDesc.VarType.SELECTED_ROWS
                sparse_grad_to_param.append(":".join(
                    [delta_var_name, param.name]))
            else:
                delta_type = param.type
            delta_var = pserver_block.create_var(
                name=delta_var_name,
                persistable=False,
                type=delta_type,
                dtype=param.dtype,
                shape=param.shape)

            per_opt_block.append_op(
                type="sum",
                inputs={"X": [param, delta_var]},
                outputs={"Out": param})
            param_to_block_id.append(delta_var_name + ":" + str(
                per_opt_block.idx))

        attrs = {
            "optimize_blocks": optimize_block,
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
            "grad_to_block_id": param_to_block_id,
            "sparse_grad_to_param": sparse_grad_to_param
        }

        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs=attrs)

        pserver_program._sync_with_cpp()
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
        return pserver_program

    def _init_splited_vars(self):
        param_list = []
        grad_list = []
        param_grad_set = set()
        # step 1. create param_list
        for p, g in self.params_grads:
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                self.sparse_var_list.append(p.name)

        # step 2. Slice vars into numbers of piece with block_size
        # when we slice var up into blocks, we will slice the var according to
        # pserver services' count. A pserver may have two or more listening ports.
        param_blocks = slice_variable(param_list,
                                      len(self.pserver_endpoints),
                                      self.config.min_block_size)

        # step 3. Create splited param from split blocks
        # origin_param_name -> [splited_param_vars]
        # Todo: update _create_vars_from_blocklist
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)

        # step 4. Create mapping of endpoint -> split var to create pserver side program
        self.param_opt_ep_mapping = collections.OrderedDict()
        [
            self.param_opt_ep_mapping.update({
                ep: {
                    "params": [],
                }
            }) for ep in self.pserver_endpoints
        ]

        # step 5. Create delta var of Geo-Sgd & record vars infomation
        for origin_name, splited_vars in self.param_var_mapping.items():
            origin_var = self.origin_program.global_block().var(origin_name)
            self.vars_info[origin_name] = collections.OrderedDict()
            self.vars_info[origin_name]["var_names"] = []
            vars_section = self._get_splited_var_sections(splited_vars)
            self.vars_info[origin_name]["sections"] = [
                str(i) for i in vars_section
            ]
            self.vars_info[origin_name]["epmap"] = []
            self.vars_info[origin_name]["is_sparse"] = []
            # todo: add var shape(may be no need,because recv scope have)
            if origin_name in self.sparse_var_list:
                delta_type = core.VarDesc.VarType.SELECTED_ROWS
                self.vars_info[origin_name]["is_sparse"].append("True")
            else:
                delta_type = origin_var.type
                self.vars_info[origin_name]["is_sparse"].append("False")

            delta_var = self.origin_program.global_block().create_var(
                name=".".join([origin_name, "delta"]),
                persistable=False,
                dtype=origin_var.dtype,
                type=delta_type,
                shape=origin_var.shape)

            self.delta_vars_list.append(delta_var)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)
                self.vars_overview.add_distributed_var(
                    origin_var=origin_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")
                self.split_to_origin_mapping[splited_var.name] = origin_name
                if origin_name in self.sparse_var_list:
                    self.sparse_var_splited_list.append(splited_var.name)
                self.vars_info[origin_name]["var_names"].append(
                    splited_var.name)
                if len(splited_vars) != 1:
                    self.origin_program.global_block().create_var(
                        name=".".join([splited_var.name, "delta"]),
                        persistable=False,
                        dtype=splited_var.dtype,
                        type=delta_type,
                        shape=splited_var.shape)