machine_translation.py 8.9 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""seq2seq model for fluid."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time
import distutils.util

24
import paddle
D
dzhwinter 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor


def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
    def linear(inputs):
        return fluid.layers.fc(input=inputs, size=size, bias_attr=True)

    forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))

    cell_t = fluid.layers.sums(input=[
        fluid.layers.elementwise_mul(
            x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
                x=input_gate, y=cell_tilde)
    ])

    hidden_t = fluid.layers.elementwise_mul(
        x=output_gate, y=fluid.layers.tanh(x=cell_t))

    return hidden_t, cell_t


def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
                   target_dict_dim, is_generating, beam_size, max_length):
    """Construct a seq2seq network."""

    def bi_lstm_encoder(input_seq, gate_size):
        # Linear transformation part for input gate, output gate, forget gate
        # and cell activation vectors need be done outside of dynamic_lstm.
        # So the output size is 4 times of gate_size.
        input_forward_proj = fluid.layers.fc(input=input_seq,
                                             size=gate_size * 4,
                                             act=None,
                                             bias_attr=False)
        forward, _ = fluid.layers.dynamic_lstm(
            input=input_forward_proj, size=gate_size * 4, use_peepholes=False)
        input_reversed_proj = fluid.layers.fc(input=input_seq,
                                              size=gate_size * 4,
                                              act=None,
                                              bias_attr=False)
        reversed, _ = fluid.layers.dynamic_lstm(
            input=input_reversed_proj,
            size=gate_size * 4,
            is_reverse=True,
            use_peepholes=False)
        return forward, reversed

    src_word_idx = fluid.layers.data(
        name='source_sequence', shape=[1], dtype='int64', lod_level=1)

    src_embedding = fluid.layers.embedding(
        input=src_word_idx,
        size=[source_dict_dim, embedding_dim],
        dtype='float32')

    src_forward, src_reversed = bi_lstm_encoder(
        input_seq=src_embedding, gate_size=encoder_size)

    encoded_vector = fluid.layers.concat(
        input=[src_forward, src_reversed], axis=1)

    encoded_proj = fluid.layers.fc(input=encoded_vector,
                                   size=decoder_size,
                                   bias_attr=False)

    backward_first = fluid.layers.sequence_pool(
        input=src_reversed, pool_type='first')

    decoder_boot = fluid.layers.fc(input=backward_first,
                                   size=decoder_size,
                                   bias_attr=False,
                                   act='tanh')

    def lstm_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
                                    decoder_boot, decoder_size):
        def simple_attention(encoder_vec, encoder_proj, decoder_state):
            decoder_state_proj = fluid.layers.fc(input=decoder_state,
                                                 size=decoder_size,
                                                 bias_attr=False)
            decoder_state_expand = fluid.layers.sequence_expand(
                x=decoder_state_proj, y=encoder_proj)
            concated = fluid.layers.concat(
                input=[encoder_proj, decoder_state_expand], axis=1)
            attention_weights = fluid.layers.fc(input=concated,
                                                size=1,
                                                act='tanh',
                                                bias_attr=False)
            attention_weights = fluid.layers.sequence_softmax(
                input=attention_weights)
            weigths_reshape = fluid.layers.reshape(
                x=attention_weights, shape=[-1])
            scaled = fluid.layers.elementwise_mul(
                x=encoder_vec, y=weigths_reshape, axis=0)
            context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
            return context

        rnn = fluid.layers.DynamicRNN()

        cell_init = fluid.layers.fill_constant_batch_size_like(
            input=decoder_boot,
            value=0.0,
            shape=[-1, decoder_size],
            dtype='float32')
        cell_init.stop_gradient = False

        with rnn.block():
            current_word = rnn.step_input(target_embedding)
            encoder_vec = rnn.static_input(encoder_vec)
            encoder_proj = rnn.static_input(encoder_proj)
            hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
            cell_mem = rnn.memory(init=cell_init)
            context = simple_attention(encoder_vec, encoder_proj, hidden_mem)
            decoder_inputs = fluid.layers.concat(
                input=[context, current_word], axis=1)
            h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
            rnn.update_memory(hidden_mem, h)
            rnn.update_memory(cell_mem, c)
            out = fluid.layers.fc(input=h,
                                  size=target_dict_dim,
                                  bias_attr=True,
                                  act='softmax')
            rnn.output(out)
        return rnn()

    if not is_generating:
        trg_word_idx = fluid.layers.data(
            name='target_sequence', shape=[1], dtype='int64', lod_level=1)

        trg_embedding = fluid.layers.embedding(
            input=trg_word_idx,
            size=[target_dict_dim, embedding_dim],
            dtype='float32')

        prediction = lstm_decoder_with_attention(trg_embedding, encoded_vector,
                                                 encoded_proj, decoder_boot,
                                                 decoder_size)
        label = fluid.layers.data(
            name='label_sequence', shape=[1], dtype='int64', lod_level=1)
        cost = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        feeding_list = ["source_sequence", "target_sequence", "label_sequence"]

        return avg_cost, feeding_list


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    lod_t = core.LoDTensor()
    lod_t.set(flattened_data, place)
    lod_t.set_lod([lod])
    return lod_t, lod[-1]


def lodtensor_to_ndarray(lod_tensor):
    dims = lod_tensor.get_dims()
    ndarray = np.zeros(shape=dims).astype('float32')
    for i in xrange(np.product(dims)):
        ndarray.ravel()[i] = lod_tensor.get_float_element(i)
    return ndarray


199
def get_model(args):
Y
yi.wu 已提交
200 201
    if args.use_reader_op:
        raise Exception("machine_translation do not support reader op for now.")
202 203 204 205 206 207
    embedding_dim = 512
    encoder_size = 512
    decoder_size = 512
    dict_size = 30000
    beam_size = 3
    max_length = 250
D
dzhwinter 已提交
208
    avg_cost, feeding_list = seq_to_seq_net(
209 210 211 212 213
        embedding_dim,
        encoder_size,
        decoder_size,
        dict_size,
        dict_size,
D
dzhwinter 已提交
214
        False,
215 216
        beam_size=beam_size,
        max_length=max_length)
D
dzhwinter 已提交
217 218 219 220 221 222 223 224

    # clone from default main program
    inference_program = fluid.default_main_program().clone()

    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)

    train_batch_generator = paddle.batch(
        paddle.reader.shuffle(
225
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
D
dzhwinter 已提交
226 227 228 229
        batch_size=args.batch_size)

    test_batch_generator = paddle.batch(
        paddle.reader.shuffle(
230
            paddle.dataset.wmt14.test(dict_size), buf_size=1000),
D
dzhwinter 已提交
231 232
        batch_size=args.batch_size)

233 234
    return avg_cost, inference_program, optimizer, train_batch_generator, \
           test_batch_generator, None