async_executor.py 12.5 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import contextlib
import six
from .framework import Program, default_main_program, Variable
from . import core
from .executor import global_scope, Executor
from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import io
from .data_feed_desc import DataFeedDesc
27
from .trainer_desc import TrainerDesc, MultiTrainer, DistMultiTrainer
H
heqiaozhi 已提交
28
from .distributed import ps_instance
H
heqiaozhi 已提交
29
from .contrib.utils import hdfs_utils as hdfs
W
Wang Guibao 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

__all__ = ['AsyncExecutor']


class AsyncExecutor(object):
    """
    An asynchronous Executor in Python. Through exploiting the power of
    multi-core processor and data queueing, AsyncExecutor makes data reading
    and cosuming decoupled, each run in multiple threads in parallel.

    Instead of reading data in python side, AsyncExecutor accepts a training
    file list, which will be retrieved in C++, then training inputs will be
    read, parsed and fed to training network within C++ code.

    AsyncExecutor is in active development and the API might change in the near
    future.

    Example:
        >>> data_feed = fluid.DataFeedDesc('data.proto')
        >>> startup_program = fluid.default_startup_program()
        >>> main_program = fluid.default_main_program()
        >>> filelist = ["train_data/part-%d" % i for i in range(100)]
        >>> thread_num = len(filelist) / 4
        >>>
        >>> place = fluid.CPUPlace()
        >>> async_executor = fluid.AsyncExecutor(place)
        >>>
        >>> async_executor.run_startup_program(startup_program)
        >>>
        >>> epoch = 10
        >>> for i in range(epoch):
        >>>     async_executor.run(main_program,
        >>>                        data_feed,
        >>>                        filelist,
        >>>                        thread_num,
        >>>                        [acc],
        >>>                        debug=False)

    Args:
        place(fluid.CPUPlace|None): indicate the executor run on which device.
                                   Only CPUPlace supported

    Note:
        For debugging complicated network in parallel-GPUs, you can test it
        on the executor. They has the exactly same arguments, and expected
        the same results.

    Note: Only running on CPUPlace supported.
    """

D
dongdaxiang 已提交
80
    def __init__(self, place=None, run_mode=""):
X
xjqbest 已提交
81 82
        """
        Init.
X
xjqbest 已提交
83 84 85 86 87

        Example:
            >>> place = fluid.CPUPlace()
            >>> async_executor = fluid.AsyncExecutor(place)

X
xjqbest 已提交
88 89 90 91
        Args:
            place(Place): CPUPlace or GPUPlace.
            run_mode(str): default is empty string.
        """
W
Wang Guibao 已提交
92 93 94 95 96 97 98 99 100 101
        if place is None:
            place = core.CPUPlace()
        if not isinstance(place, core.CPUPlace):
            raise ValueError("AsyncExecutor only supports CPU device")

        p = core.Place()
        p.set_place(place)

        scope = global_scope()
        self.executor = core.AsyncExecutor(scope, p)
H
heqiaozhi 已提交
102
        self.instance = None
W
Wang Guibao 已提交
103

D
dongdaxiang 已提交
104 105 106 107 108 109 110 111
    def run(self,
            program,
            data_feed,
            filelist,
            thread_num,
            fetch,
            mode="",
            debug=False):
W
Wang Guibao 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        """
        Run program by this AsyncExecutor. Training dataset will be in filelist.
        Users can also inspect certain variables by naming them in parameter
        :code:`fetch`, like in fluid.Executor. Unlike fluid.Executor, however,
        AsyncExecutor doesn't return fetched variables, instead, it will dump
        the values of each fetched variable to stdandard output.

        Running the dataset will be on multiple threads, within each a thread
        local scope will be created, then all OPs also created in that scope.
        Parameters are updated by all the OPs simultaneously.

        Args:
            program(Program): the program that need to run, if not provied,
                              then default_main_program will be used.
            data_feed(DataFeedDesc): A DataFeedDesc object
            filelist(str): a file containing the training dataset file list
            thread_num(int): number of concurrent training threads. See
                             :code:`Note` for how to set this properly
            fetch(str|list): the var name or a list of var names to inspect
D
dongdaxiang 已提交
131
            mode(str): run mode of this interface
W
Wang Guibao 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            debug(bool): When set to True, fetch vars will be printed to
                         standard output after each minibatch

        Note:
            the executor will run all operators in the program but not only
            the operators dependent by the fetch_list.

        Note:
            Running AsyncExecutor will be on multiple threads, each bound to a
            CPU core. To achieve best performance, it's suggested to set thread
            num to be equal or slightly less than that of CPU cores.
        """
        if program is None:
            program = default_main_program()
        program_desc = program.desc

        if data_feed is None:
            raise ValueError('ValueError: data_feed should be provided')

        if filelist is None:
            raise ValueError('ValueError: filelist should be provided')

        if isinstance(filelist, str):
            filelist = [filelist]

        if not isinstance(thread_num, int):
            raise TypeError('TypeError: thread_num should be a positive number')

        if fetch is not None:
            if isinstance(fetch, Variable):
                fetch = [fetch]
            fetch_var_names = [var.name for var in fetch]
            for fetch_var in fetch:
                shape = fetch_var.shape
                if shape[len(shape) - 1] != 1:
                    raise AssertionError(
                        "%s: Fetch variable has wrong shape. Only varibles "
                        "with the last dimension size 1 supported." %
                        (fetch_var.name))

        self.executor.run_from_files(program_desc,
                                     data_feed.desc(), filelist, thread_num,
174 175
                                     fetch_var_names, mode, debug,
                                     str(id(program_desc)))
H
heqiaozhi 已提交
176

D
dongdaxiang 已提交
177 178 179 180 181 182 183 184 185 186 187
    def download_data(self,
                      afs_path,
                      local_path,
                      fs_default_name,
                      ugi,
                      file_cnt,
                      hadoop_home="$HADOOP_HOME",
                      process_num=12):
        """
        download_data is a default download method for distributed training
        a user download data without this method
X
xjqbest 已提交
188

D
dongdaxiang 已提交
189 190 191
        Example:
            >>> exe = fluid.AsyncExecutor()
            >>> exe.download_data("/xxx/xxx/xx/",
X
xjqbest 已提交
192 193
            >>>                   "./data", "afs://
            >>>  xxx.xxx.xxx.xxx:9901", "xxx,yyy")
X
xjqbest 已提交
194

D
dongdaxiang 已提交
195 196 197 198 199
        Args:
            afs_path(str): afs_path defined by users
            local_path(str): download data path
            fs_default_name(str): file system server address
            ugi(str): hadoop ugi
X
xjqbest 已提交
200
            file_cnt(int): a user can specify file number for debugging
D
dongdaxiang 已提交
201 202 203
            hadoop_home(str): hadoop home path
            process_num(int): download process num
        """
H
heqiaozhi 已提交
204
        if self.instance is None:
D
dongdaxiang 已提交
205 206 207 208
            raise ValueError('instance is None, please run'
                             'config_distributed_nodes init instance')

        configs = {"fs.default.name": fs_default_name, "hadoop.job.ugi": ugi}
H
heqiaozhi 已提交
209 210 211 212

        client = hdfs.HDFSClient(hadoop_home, configs)
        downloads = hdfs.multi_download(
            client,
D
dongdaxiang 已提交
213 214
            afs_path,
            local_path,
H
heqiaozhi 已提交
215 216 217
            self.instance.get_worker_index(),
            self.instance.get_node_cnt() / 2,
            multi_processes=process_num)
D
dongdaxiang 已提交
218
        self.instance.barrier_worker()  #wait for download_data
H
heqiaozhi 已提交
219 220

    def get_instance(self):
D
dongdaxiang 已提交
221 222 223 224
        """
        get current node's instance so that user can do operations
        in distributed setting
        """
H
heqiaozhi 已提交
225
        if self.instance is None:
D
dongdaxiang 已提交
226 227 228 229 230 231 232 233
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
        return self.instance

    def config_distributed_nodes(self):
        """
        if a user needs to run distributed async executor
X
xjqbest 已提交
234
        he or she needs to do a global configuration so that
D
dongdaxiang 已提交
235 236 237
        information of current process can be obtained
        """
        self.instance = ps_instance.PaddlePSInstance(1, 2)
H
heqiaozhi 已提交
238 239
        return self.instance

H
heqiaozhi 已提交
240
    def stop(self):
D
dongdaxiang 已提交
241 242 243 244
        """
        at the end of process, users should call stop to servers
        and barrier all workers
        """
H
heqiaozhi 已提交
245
        if self.instance is None:
D
dongdaxiang 已提交
246 247 248 249
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
        self.instance.barrier_worker()  #worker do all things
H
heqiaozhi 已提交
250 251
        if self.instance.is_first_worker():
            self.executor.stop_server()
D
dongdaxiang 已提交
252
        self.instance.barrier_worker()  #sync
253 254
        self.instance.barrier_all()
        self.instance.finalize()
H
heqiaozhi 已提交
255

H
heqiaozhi 已提交
256
    def init_server(self, dist_desc):
D
dongdaxiang 已提交
257
        """
X
xjqbest 已提交
258 259
        Initialize server of current node if current process is a server.

D
dongdaxiang 已提交
260
        Args:
X
xjqbest 已提交
261 262
            dist_desc(str): a protobuf string that describes
                            how to init a worker and a server
D
dongdaxiang 已提交
263
        """
H
heqiaozhi 已提交
264
        if self.instance is None:
D
dongdaxiang 已提交
265 266 267
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
268 269 270
        self.dist_desc_str = text_format.MessageToString(dist_desc)
        self.dist_desc = dist_desc
        self.executor.init_server(self.dist_desc_str, self.instance._rankid)
H
heqiaozhi 已提交
271 272
        ip = self.executor.start_server()
        self.instance.set_ip(ip)
D
dongdaxiang 已提交
273
        self.instance.barrier_all()  #wait all server start
H
heqiaozhi 已提交
274 275
        ips = self.instance.gather_ips()
        self.executor.gather_servers(ips, self.instance.get_node_cnt())
D
dongdaxiang 已提交
276
        self.instance.barrier_all()  #wait all worker start
H
heqiaozhi 已提交
277

H
heqiaozhi 已提交
278
    def init_worker(self, dist_desc, startup_program):
D
dongdaxiang 已提交
279
        """
X
xjqbest 已提交
280 281
        Initialize worker of current node if current process is a worker.

D
dongdaxiang 已提交
282
        Args:
X
xjqbest 已提交
283 284 285
            dist_desc(str): a protobuf string that describes
                            how to init a worker and a server
            startup_program(fluid.Program): startup program of current process
D
dongdaxiang 已提交
286
        """
H
heqiaozhi 已提交
287
        if self.instance is None:
D
dongdaxiang 已提交
288 289 290
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
291

292
        self.dist_desc_str = text_format.MessageToString(dist_desc)
293
        self.dist_desc = dist_desc
H
heqiaozhi 已提交
294 295
        place = core.CPUPlace()
        executor = Executor(place)
H
heqiaozhi 已提交
296 297 298 299 300
        if isinstance(startup_program, list):
            for sp in startup_program:
                executor.run(sp)
        else:
            executor.run(startup_program)
H
heqiaozhi 已提交
301

D
dongdaxiang 已提交
302
        self.instance.barrier_all()  #wait all server start
H
heqiaozhi 已提交
303
        ips = self.instance.gather_ips()
304
        self.executor.init_worker(self.dist_desc_str, ips,
D
dongdaxiang 已提交
305 306 307
                                  self.instance.get_node_cnt(),
                                  self.instance._rankid)
        self.instance.barrier_all()  #wait all worker start
H
heqiaozhi 已提交
308 309
        if self.instance.is_first_worker():
            self.executor.init_model()
D
dongdaxiang 已提交
310 311
        self.instance.barrier_worker()  #wait init model

312
    def init_model(self):
D
dongdaxiang 已提交
313 314 315 316
        """
        init_model command that can be invoked from one of the worker
        model parameters are initialized in servers
        """
H
heqiaozhi 已提交
317
        if self.instance is None:
D
dongdaxiang 已提交
318 319 320
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
321 322 323
        self.executor.init_model()

    def save_model(self, save_path):
D
dongdaxiang 已提交
324 325
        """
        save_model command that can be invoked from one of the worker
X
xjqbest 已提交
326 327
        model parameters are saved in servers and upload to save_path of file system.

D
dongdaxiang 已提交
328
        Args:
X
xjqbest 已提交
329
            save_path(str): save path to file system
D
dongdaxiang 已提交
330
        """
H
heqiaozhi 已提交
331
        if self.instance is None:
D
dongdaxiang 已提交
332 333 334
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
335
        self.executor.save_model(save_path)