test_linalg_pinv_op.py 8.2 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
from gradient_checker import grad_check
from decorator_helper import prog_scope


class LinalgPinvTestCase(unittest.TestCase):
    def setUp(self):
        self.init_config()
        self.generate_input()
        self.generate_output()
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def generate_input(self):
        self._input_shape = (5, 5)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)

    def generate_output(self):
        self._output_data = np.linalg.pinv(self._input_data, \
            rcond=self.rcond, hermitian=self.hermitian)

    def init_config(self):
        self.dtype = 'float64'
        self.rcond = 1e-15
        self.hermitian = False

    def test_dygraph(self):
        for place in self.places:
            paddle.disable_static(place)
            x = paddle.to_tensor(self._input_data, place=place)
            out = paddle.linalg.pinv(
                x, rcond=self.rcond, hermitian=self.hermitian).numpy()
            if (np.abs(out - self._output_data) < 1e-6).any():
                pass
            else:
                print("EXPECTED: \n", self._output_data)
                print("GOT     : \n", out)
                raise RuntimeError("Check PINV dygraph Failed")

    def test_static(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                x = paddle.fluid.data(
                    name="input",
                    shape=self._input_shape,
                    dtype=self._input_data.dtype)
                out = paddle.linalg.pinv(
                    x, rcond=self.rcond, hermitian=self.hermitian)
                exe = fluid.Executor(place)
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": self._input_data},
                                  fetch_list=[out])
                if (np.abs(fetches[0] - self._output_data) < 1e-6).any():
                    pass
                else:
                    print("EXPECTED: \n", self._output_data)
                    print("GOT     : \n", fetches[0])
                    raise RuntimeError("Check PINV static Failed")

    def test_grad(self):
        for place in self.places:
            x = paddle.to_tensor(
                self._input_data, place=place, stop_gradient=False)
            out = paddle.linalg.pinv(
                x, rcond=self.rcond, hermitian=self.hermitian)
            try:
                out.backward()
                x_grad = x.grad
                # print(x_grad)
            except:
                raise RuntimeError("Check PINV Grad Failed")


class LinalgPinvTestCase1(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (4, 5)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)


class LinalgPinvTestCase2(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (5, 4)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)


class LinalgPinvTestCaseBatch1(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 5)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)


class LinalgPinvTestCaseBatch2(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 4, 5)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)


class LinalgPinvTestCaseBatch3(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 4)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)


class LinalgPinvTestCaseBatch4(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 6, 5, 4)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)


class LinalgPinvTestCaseBatchBig(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (2, 200, 300)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)


class LinalgPinvTestCaseFP32(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 5)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)

    def init_config(self):
        self.dtype = 'float32'
        self.rcond = 1e-15
        self.hermitian = False


class LinalgPinvTestCaseRcond(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 5)
        self._input_data = np.random.random(self._input_shape).astype(
            self.dtype)

    def init_config(self):
        self.dtype = 'float64'
        self.rcond = 1e-10
        self.hermitian = False


class LinalgPinvTestCaseHermitian1(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (5, 5)
        x = np.random.random(self._input_shape).astype(self.dtype) + \
            1J * np.random.random(self._input_shape).astype(self.dtype)
        self._input_data = x + x.transpose().conj()

    def init_config(self):
        self.dtype = 'float64'
        self.rcond = 1e-15
        self.hermitian = True


class LinalgPinvTestCaseHermitian2(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 5)
        x = np.random.random(self._input_shape).astype(self.dtype) + \
            1J * np.random.random(self._input_shape).astype(self.dtype)
        self._input_data = x + x.transpose((0, 2, 1)).conj()

    def init_config(self):
        self.dtype = 'float64'
        self.rcond = 1e-15
        self.hermitian = True


class LinalgPinvTestCaseHermitian3(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 5)
        x = np.random.random(self._input_shape).astype(self.dtype) + \
            1J * np.random.random(self._input_shape).astype(self.dtype)
        self._input_data = x + x.transpose((0, 2, 1)).conj()

    def init_config(self):
        self.dtype = 'float32'
        self.rcond = 1e-15
        self.hermitian = True


class LinalgPinvTestCaseHermitian4(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (5, 5)
        x = np.random.random(self._input_shape).astype(self.dtype)
        self._input_data = x + x.transpose()

    def init_config(self):
        self.dtype = 'float64'
        self.rcond = 1e-15
        self.hermitian = True


class LinalgPinvTestCaseHermitian5(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 5)
        x = np.random.random(self._input_shape).astype(self.dtype)
        self._input_data = x + x.transpose((0, 2, 1))

    def init_config(self):
        self.dtype = 'float64'
        self.rcond = 1e-15
        self.hermitian = True


class LinalgPinvTestCaseHermitianFP32(LinalgPinvTestCase):
    def generate_input(self):
        self._input_shape = (3, 5, 5)
        x = np.random.random(self._input_shape).astype(self.dtype)
        self._input_data = x + x.transpose((0, 2, 1))

    def init_config(self):
        self.dtype = 'float32'
        self.rcond = 1e-15
        self.hermitian = True


if __name__ == '__main__':
    unittest.main()