temporal_shift_op.cu 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/temporal_shift_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using framework::Tensor;


template <typename T>
__global__ void KeTemporalShiftFw(const T* input, T* output, const int ntchw,
    const int tchw, const int chw, const int hw, const int w, const int t, const int c) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int src_it = 0;
  for (; tid < ntchw; tid += stride) {
      int in = tid / tchw;
      int it = (tid % tchw) / chw;
      int ic = (tid % chw) / hw;
      int ih = (tid % hw) / w;
      int iw = tid % w;

      if (ic < c / 4) {
        src_it = it - 1;
      } else if (ic < c / 2) {
        src_it = it + 1;
      } else {
        src_it = it;
      }
      
      if (src_it < 0 || src_it >= t) {
        output[tid] = 0;
      } else {
        int src_idx = GetEntryIndex(in, src_it, ic, ih, iw, tchw, chw, hw, w);
        output[tid] = input[src_idx];
      }
  }
}

template <typename T>
__global__ void KeTemporalShiftBw(const T* output_grad, T* input_grad, const int ntchw,
    const int tchw, const int chw, const int hw, const int w, const int t, const int c) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int src_it = 0;
  for (; tid < ntchw; tid += stride) {
      int in = tid / tchw;
      int it = (tid % tchw) / chw;
      int ic = (tid % chw) / hw;
      int ih = (tid % hw) / w;
      int iw = tid % w;

      if (ic < c / 4) {
        src_it = it - 1;
      } else if (ic < c / 2) {
        src_it = it + 1;
      } else {
        src_it = it;
      }
      
      if (src_it >= 0 && src_it < t) {
        int src_idx = GetEntryIndex(in, src_it, ic, ih, iw, tchw, chw, hw, w);
        input_grad[src_idx] = output_grad[tid];
      }
  }
}

template <typename T>
class TemporalShiftOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    int t = ctx.Attr<int>("seg_num");

    const int nt = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];

    const int hw = h * w;
    const int chw = c * hw;
    const int tchw = t * chw;
    const int ntchw = nt * chw;

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>({nt, c, h, w}, ctx.GetPlace());

    int pixelNum = nt * chw;
    int grid_dim = (pixelNum + 512 - 1) / 512;
    grid_dim = grid_dim > 8 ? 8 : grid_dim;

    KeTemporalShiftFw<
      T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
          input_data, output_data, ntchw, tchw, chw, hw, w, t, c);
  }
};

template <typename T>
class TemporalShiftGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    int t = ctx.Attr<int>("seg_num");

    const int nt = output_grad->dims()[0];
    const int c = output_grad->dims()[1];
    const int h = output_grad->dims()[2];
    const int w = output_grad->dims()[3];

    const int hw = h * w;
    const int chw = c * hw;
    const int tchw = t * chw;
    const int ntchw = nt * chw;

    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = input_grad->mutable_data<T>({nt, c, h, w}, ctx.GetPlace());
132 133 134
    math::SetConstant<platform::CUDADeviceContext, T>()(
        ctx.template device_context<platform::CUDADeviceContext>(), input_grad,
        static_cast<T>(0));
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    int pixelNum = nt * chw;
    int grid_dim = (pixelNum + 512 - 1) / 512;
    grid_dim = grid_dim > 8 ? 8 : grid_dim;

    KeTemporalShiftBw<
      T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
          output_grad_data, input_grad_data, ntchw, tchw, chw, hw, w, t, c);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(temporal_shift, ops::TemporalShiftOpCUDAKernel<float>,
                        ops::TemporalShiftOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(temporal_shift_grad,
                        ops::TemporalShiftGradOpCUDAKernel<float>,
                        ops::TemporalShiftGradOpCUDAKernel<double>);