data_feed.h 13.2 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>
23
#include <sstream>
W
Wang Guibao 已提交
24 25 26 27 28 29

#include "paddle/fluid/framework/data_feed.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
30
#include "paddle/fluid/string/string_helper.h"
31 32
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
W
Wang Guibao 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

namespace paddle {
namespace framework {

// DataFeed is the base virtual class for all ohther DataFeeds.
// It is used to read files and parse the data for subsequent trainer.
// Example:
//   DataFeed* reader =
//   paddle::framework::DataFeedFactory::CreateDataFeed(data_feed_name);
//   reader->Init(data_feed_desc); // data_feed_desc is a protobuf object
//   reader->SetFileList(filelist);
//   const std::vector<std::string> & use_slot_alias =
//   reader->GetUseSlotAlias();
//   for (auto name: use_slot_alias){ // for binding memory
//     reader->AddFeedVar(scope->Var(name), name);
//   }
//   reader->Start();
//   while (reader->Next()) {
//      // trainer do something
//   }
class DataFeed {
 public:
  DataFeed() {}
  virtual ~DataFeed() {}
  virtual void Init(const paddle::framework::DataFeedDesc& data_feed_desc) = 0;
  virtual bool CheckFile(const char* filename) {
    PADDLE_THROW("This function(CheckFile) is not implemented.");
  }
  // Set filelist for DataFeed.
  // Pay attention that it must init all readers before call this function.
  // Otherwise, Init() function will init finish_set_filelist_ flag.
  virtual bool SetFileList(const std::vector<std::string>& files);
  virtual bool Start() = 0;
D
dongdaxiang 已提交
66

W
Wang Guibao 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  // The trainer calls the Next() function, and the DataFeed will load a new
  // batch to the feed_vec. The return value of this function is the batch
  // size of the current batch.
  virtual int Next() = 0;
  // Get all slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetAllSlotAlias() {
    return all_slots_;
  }
  // Get used slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetUseSlotAlias() {
    return use_slots_;
  }
  // This function is used for binding feed_vec memory
  virtual void AddFeedVar(Variable* var, const std::string& name);

82 83 84 85 86 87 88 89 90 91
  // This function will do nothing at default
  virtual void SetMemoryData(void* memory_data) { }
  // This function will do nothing at default
  virtual void SetMemoryDataMutex(std::mutex* mutex) { }
  // This function will do nothing at default
  virtual void SetThreadId(int thread_id) { }
  // This function will do nothing at default
  virtual void SetThreadNum(int thread_num) { }
  // This function will do nothing at default
  virtual void SetTrainerNum(int trainer_num) { }
92 93 94 95 96 97
  virtual void LoadIntoMemory() {
    PADDLE_THROW("This function(LoadIntoMemory) is not implemented.");
  }
  virtual void LocalShuffle() {
    PADDLE_THROW("This function(LocalShuffle) is not implemented.");
  }
98
  virtual void GlobalShuffle() {
99 100
    PADDLE_THROW("This function(GlobalShuffle) is not implemented.");
  }
X
xujiaqi01 已提交
101 102 103 104
  // This function will do nothing at default
  virtual void FillMemoryDataToChannel() { }
  virtual void FillChannelToMemoryData() { }
  virtual void PutInsToChannel(const std::string& ins_str) { }
105

W
Wang Guibao 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
 protected:
  // The following three functions are used to check if it is executed in this
  // order:
  //   Init() -> SetFileList() -> Start() -> Next()
  virtual void CheckInit();
  virtual void CheckSetFileList();
  virtual void CheckStart();
  virtual void SetBatchSize(
      int batch);  // batch size will be set in Init() function
  // This function is used to pick one file from the global filelist(thread
  // safe).
  virtual bool PickOneFile(std::string* filename);

  static std::vector<std::string> filelist_;
  static size_t file_idx_;
  static std::mutex mutex_for_pick_file_;

  // the alias of used slots, and its order is determined by
  // data_feed_desc(proto object)
  std::vector<std::string> use_slots_;
  std::vector<bool> use_slots_is_dense_;

  // the alias of all slots, and its order is determined by data_feed_desc(proto
  // object)
  std::vector<std::string> all_slots_;
  std::vector<std::string> all_slots_type_;
  std::vector<int>
      use_slots_index_;  // -1: not used; >=0: the index of use_slots_

  // The data read by DataFeed will be stored here
136
  std::vector<LoDTensor*> feed_vec_;
W
Wang Guibao 已提交
137 138 139 140 141 142 143 144 145

  // the batch size defined by user
  int default_batch_size_;
  // current batch size
  int batch_size_;

  bool finish_init_;
  static bool finish_set_filelist_;
  bool finish_start_;
146
  std::string pipe_command_;
W
Wang Guibao 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
};

// PrivateQueueDataFeed is the base virtual class for ohther DataFeeds.
// It use a read-thread to read file and parse data to a private-queue
// (thread level), and get data from this queue when trainer call Next().
template <typename T>
class PrivateQueueDataFeed : public DataFeed {
 public:
  PrivateQueueDataFeed() {}
  virtual ~PrivateQueueDataFeed() {}
  virtual void Init(const paddle::framework::DataFeedDesc& data_feed_desc) = 0;
  virtual bool Start();
  virtual int Next();

 protected:
  // The thread implementation function for reading file and parse.
  virtual void ReadThread();
  // This function is used to set private-queue size, and the most
  // efficient when the queue size is close to the batch size.
  virtual void SetQueueSize(int queue_size);
  // The reading and parsing method called in the ReadThread.
  virtual bool ParseOneInstance(T* instance) = 0;
D
dongdaxiang 已提交
169
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
W
Wang Guibao 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183
  // This function is used to put instance to vec_ins
  virtual void AddInstanceToInsVec(T* vec_ins, const T& instance,
                                   int index) = 0;
  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec(const T& ins_vec) = 0;

  // The thread for read files
  std::thread read_thread_;
  // using ifstream one line and one line parse is faster
  // than using fread one buffer and one buffer parse.
  //   for a 601M real data:
  //     ifstream one line and one line parse: 6034 ms
  //     fread one buffer and one buffer parse: 7097 ms
  std::ifstream file_;
D
dongdaxiang 已提交
184
  std::shared_ptr<FILE> fp_;
W
Wang Guibao 已提交
185
  size_t queue_size_;
186
  string::LineFileReader reader_;
W
Wang Guibao 已提交
187 188 189 190
  // The queue for store parsed data
  std::unique_ptr<paddle::operators::reader::BlockingQueue<T>> queue_;
};

191 192 193 194 195
template <typename T>
class InMemoryDataFeed : public PrivateQueueDataFeed<T> {
 public:
  InMemoryDataFeed();
  virtual ~InMemoryDataFeed() {}
196
  virtual void Init(const paddle::framework::DataFeedDesc& data_feed_desc) = 0;
197 198
  virtual bool Start();
  virtual int Next();
199 200 201 202 203
  virtual void SetMemoryData(void* memory_data);
  virtual void SetMemoryDataMutex(std::mutex* mutex);
  virtual void SetThreadId(int thread_id);
  virtual void SetThreadNum(int thread_num);
  virtual void SetTrainerNum(int trainer_num);
204
  virtual void PutInsToChannel(const std::string& ins_str);
205 206
  virtual void FillMemoryDataToChannel();
  virtual void FillChannelToMemoryData();
207 208
  virtual void LoadIntoMemory();
  virtual void LocalShuffle();
209
  virtual void GlobalShuffle();
X
xujiaqi01 已提交
210

211
 protected:
X
xujiaqi01 已提交
212 213 214
  virtual void AddInstanceToInsVec(T* vec_ins,
                                   const T& instance,
                                   int index) = 0;
215 216 217
  virtual bool ParseOneInstance(T* instance) = 0;
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
  virtual void PutToFeedVec(const T& ins_vec) = 0;
X
xujiaqi01 已提交
218 219
  virtual void SerializeIns(const T& ins, std::string* str) = 0;
  virtual void DeserializeIns(T* ins, const std::string& str) = 0;
220

221 222 223 224 225
  int thread_id_;
  int thread_num_;
  int trainer_num_;
  std::vector<T>* memory_data_;
  std::mutex* mutex_for_update_memory_data_;
226 227 228 229 230 231
  // when read ins, we put ins from one channel to the other,
  // and when finish reading, we set cur_channel = 1 - cur_channel,
  // so if cur_channel=0, all data are in shuffled_ins_, else shuffled_ins_out_
  int cur_channel_;
  std::shared_ptr<paddle::framework::BlockingQueue<T>> shuffled_ins_;
  std::shared_ptr<paddle::framework::BlockingQueue<T>> shuffled_ins_out_;
232
  int64_t fleet_send_batch_size_;
233 234
};

W
Wang Guibao 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
// This class define the data type of instance(ins_vec) in MultiSlotDataFeed
class MultiSlotType {
 public:
  MultiSlotType() {}
  ~MultiSlotType() {}
  void Init(const std::string& type) {
    CheckType(type);
    if (type_[0] == 'f') {
      float_feasign_.clear();
    } else if (type_[0] == 'u') {
      uint64_feasign_.clear();
    }
    type_ = type;
  }
  void InitOffset() {
    offset_.resize(1);
    // LoDTensor' lod is counted from 0, the size of lod
    // is one size larger than the size of data.
    offset_[0] = 0;
  }
  const std::vector<size_t>& GetOffset() const { return offset_; }
256
  std::vector<size_t>& MutableOffset() { return offset_; }
W
Wang Guibao 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  void AddValue(const float v) {
    CheckFloat();
    float_feasign_.push_back(v);
  }
  void AddValue(const uint64_t v) {
    CheckUint64();
    uint64_feasign_.push_back(v);
  }
  void AddIns(const MultiSlotType& ins) {
    if (ins.GetType()[0] == 'f') {  // float
      CheckFloat();
      auto& vec = ins.GetFloatData();
      offset_.push_back(offset_.back() + vec.size());
      float_feasign_.insert(float_feasign_.end(), vec.begin(), vec.end());
    } else if (ins.GetType()[0] == 'u') {  // uint64
      CheckUint64();
      auto& vec = ins.GetUint64Data();
      offset_.push_back(offset_.back() + vec.size());
      uint64_feasign_.insert(uint64_feasign_.end(), vec.begin(), vec.end());
    }
  }
  const std::vector<float>& GetFloatData() const { return float_feasign_; }
279
  std::vector<float>& MutableFloatData() { return float_feasign_; }
W
Wang Guibao 已提交
280
  const std::vector<uint64_t>& GetUint64Data() const { return uint64_feasign_; }
281
  std::vector<uint64_t>& MutableUint64Data() { return uint64_feasign_; }
W
Wang Guibao 已提交
282
  const std::string& GetType() const { return type_; }
283
  std::string& MutableType() { return type_; }
W
Wang Guibao 已提交
284

X
xujiaqi01 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  std::string DebugString() {
    std::stringstream ss;
    ss << "type: " << type_ << "\n";
    ss << "offset:\n";
    ss << "[";
    for (const size_t& i : offset_) {
      ss << offset_[i] << ",";
    }
    ss << "]\ndata:\n[";
    if (type_[0] == 'f') {
      for (const float& i : float_feasign_) {
        ss << i << ",";
      }
    } else {
      for (const uint64_t& i : uint64_feasign_) {
        ss << i << ",";
      }
    }
    ss << "]\n";
    return ss.str();
  }

W
Wang Guibao 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
 private:
  void CheckType(const std::string& type) const {
    PADDLE_ENFORCE((type == "uint64") || (type == "float"),
                   "There is no this type<%s>.", type);
  }
  void CheckFloat() const {
    PADDLE_ENFORCE(type_[0] == 'f', "Add %s value to float slot.", type_);
  }
  void CheckUint64() const {
    PADDLE_ENFORCE(type_[0] == 'u', "Add %s value to uint64 slot.", type_);
  }
  std::vector<float> float_feasign_;
  std::vector<uint64_t> uint64_feasign_;
  std::string type_;
  std::vector<size_t> offset_;
};

// This DataFeed is used to feed multi-slot type data.
// The format of multi-slot type data:
//   [n feasign_0 feasign_1 ... feasign_n]*
class MultiSlotDataFeed
    : public PrivateQueueDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotDataFeed() {}
  virtual ~MultiSlotDataFeed() {}
  virtual void Init(const paddle::framework::DataFeedDesc& data_feed_desc);
  virtual bool CheckFile(const char* filename);
D
dongdaxiang 已提交
334
  // virtual void ReadThread();
W
Wang Guibao 已提交
335 336

 protected:
D
dongdaxiang 已提交
337
  virtual void ReadThread();
W
Wang Guibao 已提交
338 339 340 341
  virtual void AddInstanceToInsVec(std::vector<MultiSlotType>* vec_ins,
                                   const std::vector<MultiSlotType>& instance,
                                   int index);
  virtual bool ParseOneInstance(std::vector<MultiSlotType>* instance);
D
dongdaxiang 已提交
342
  virtual bool ParseOneInstanceFromPipe(std::vector<MultiSlotType>* instance);
W
Wang Guibao 已提交
343 344
  virtual void PutToFeedVec(const std::vector<MultiSlotType>& ins_vec);
};
345 346 347 348 349 350 351 352 353 354 355 356 357 358

class MultiSlotInMemoryDataFeed
    : public InMemoryDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotInMemoryDataFeed() {}
  virtual ~MultiSlotInMemoryDataFeed() {}
  virtual void Init(const paddle::framework::DataFeedDesc& data_feed_desc);
 protected:
  virtual void AddInstanceToInsVec(std::vector<MultiSlotType>* vec_ins,
                                   const std::vector<MultiSlotType>& instance,
                                   int index);
  virtual bool ParseOneInstance(std::vector<MultiSlotType>* instance);
  virtual bool ParseOneInstanceFromPipe(std::vector<MultiSlotType>* instance);
  virtual void PutToFeedVec(const std::vector<MultiSlotType>& ins_vec);
X
xujiaqi01 已提交
359 360 361 362
  virtual void SerializeIns(const std::vector<MultiSlotType>& ins,
                            std::string* str);
  virtual void DeserializeIns(std::vector<MultiSlotType>* ins,
                              const std::string& str);
363 364
};

W
Wang Guibao 已提交
365 366
}  // namespace framework
}  // namespace paddle