functional_cv2.py 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
16
import math
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import numbers
import collections

import numpy as np

import paddle
from paddle.utils import try_import

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

32 33
__all__ = []

34 35 36 37 38 39 40 41

def to_tensor(pic, data_format='CHW'):
    """Converts a ``numpy.ndarray`` to paddle.Tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (np.ndarray): Image to be converted to tensor.
42
        data_format (str, optional): Data format of output tensor, should be 'HWC' or
43 44 45 46 47 48 49
            'CHW'. Default: 'CHW'.

    Returns:
        Tensor: Converted image.

    """

50
    if data_format not in ['CHW', 'HWC']:
51
        raise ValueError(
52 53
            'data_format should be CHW or HWC. Got {}'.format(data_format)
        )
54 55 56 57 58 59 60 61 62 63

    if pic.ndim == 2:
        pic = pic[:, :, None]

    if data_format == 'CHW':
        img = paddle.to_tensor(pic.transpose((2, 0, 1)))
    else:
        img = paddle.to_tensor(pic)

    if paddle.fluid.data_feeder.convert_dtype(img.dtype) == 'uint8':
64
        return paddle.cast(img, np.float32) / 255.0
65 66 67 68 69 70 71 72 73 74 75
    else:
        return img


def resize(img, size, interpolation='bilinear'):
    """
    Resizes the image to given size

    Args:
        input (np.ndarray): Image to be resized.
        size (int|list|tuple): Target size of input data, with (height, width) shape.
76 77 78 79 80 81
        interpolation (int|str, optional): Interpolation method. when use cv2 backend,
            support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
82 83 84 85 86 87 88 89 90 91 92 93
            - "lanczos": cv2.INTER_LANCZOS4

    Returns:
        np.array: Resized image.

    """
    cv2 = try_import('cv2')
    _cv2_interp_from_str = {
        'nearest': cv2.INTER_NEAREST,
        'bilinear': cv2.INTER_LINEAR,
        'area': cv2.INTER_AREA,
        'bicubic': cv2.INTER_CUBIC,
94
        'lanczos': cv2.INTER_LANCZOS4,
95 96
    }

97 98 99
    if not (
        isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
    ):
100 101 102 103 104 105 106 107 108 109 110 111 112
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    h, w = img.shape[:2]

    if isinstance(size, int):
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            output = cv2.resize(
                img,
                dsize=(ow, oh),
113 114
                interpolation=_cv2_interp_from_str[interpolation],
            )
115 116 117 118 119 120
        else:
            oh = size
            ow = int(size * w / h)
            output = cv2.resize(
                img,
                dsize=(ow, oh),
121 122
                interpolation=_cv2_interp_from_str[interpolation],
            )
123
    else:
124 125 126 127 128
        output = cv2.resize(
            img,
            dsize=(size[1], size[0]),
            interpolation=_cv2_interp_from_str[interpolation],
        )
129 130 131 132 133 134 135 136 137 138 139 140 141
    if len(img.shape) == 3 and img.shape[2] == 1:
        return output[:, :, np.newaxis]
    else:
        return output


def pad(img, padding, fill=0, padding_mode='constant'):
    """
    Pads the given numpy.array on all sides with specified padding mode and fill value.

    Args:
        img (np.array): Image to be padded.
        padding (int|list|tuple): Padding on each border. If a single int is provided this
142 143
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
144 145 146 147
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (float, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
148
            This value is only used when the padding_mode is constant. Default: 0.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

    Returns:
        np.array: Padded image.

    """
    cv2 = try_import('cv2')
    _cv2_pad_from_str = {
        'constant': cv2.BORDER_CONSTANT,
        'edge': cv2.BORDER_REPLICATE,
        'reflect': cv2.BORDER_REFLECT_101,
174
        'symmetric': cv2.BORDER_REFLECT,
175 176 177 178 179 180 181 182 183 184 185
    }

    if not isinstance(padding, (numbers.Number, list, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, list, tuple)):
        raise TypeError('Got inappropriate fill arg')
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')

    if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
        raise ValueError(
186 187 188
            "Padding must be an int or a 2, or 4 element tuple, not a "
            + "{} element tuple".format(len(padding))
        )
189

190 191 192 193 194 195
    assert padding_mode in [
        'constant',
        'edge',
        'reflect',
        'symmetric',
    ], 'Padding mode should be either constant, edge, reflect or symmetric'
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    if isinstance(padding, list):
        padding = tuple(padding)
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    if isinstance(padding, Sequence) and len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    if isinstance(padding, Sequence) and len(padding) == 4:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    if len(img.shape) == 3 and img.shape[2] == 1:
211 212 213 214 215 216 217 218 219
        return cv2.copyMakeBorder(
            img,
            top=pad_top,
            bottom=pad_bottom,
            left=pad_left,
            right=pad_right,
            borderType=_cv2_pad_from_str[padding_mode],
            value=fill,
        )[:, :, np.newaxis]
220
    else:
221 222 223 224 225 226 227 228 229
        return cv2.copyMakeBorder(
            img,
            top=pad_top,
            bottom=pad_bottom,
            left=pad_left,
            right=pad_right,
            borderType=_cv2_pad_from_str[padding_mode],
            value=fill,
        )
230 231 232 233 234 235


def crop(img, top, left, height, width):
    """Crops the given image.

    Args:
236
        img (np.array): Image to be cropped. (0,0) denotes the top left
237 238 239 240 241 242 243 244 245 246 247
            corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.

    Returns:
        np.array: Cropped image.

    """

248
    return img[top : top + height, left : left + width, :]
249 250 251 252 253


def center_crop(img, output_size):
    """Crops the given image and resize it to desired size.

254 255 256 257 258
    Args:
        img (np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
        output_size (sequence or int): (height, width) of the crop box. If int,
            it is used for both directions
        backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
259

260 261
    Returns:
        np.array: Cropped image.
262

263
    """
264 265 266 267 268 269

    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))

    h, w = img.shape[0:2]
    th, tw = output_size
270 271
    i = int(round((h - th) / 2.0))
    j = int(round((w - tw) / 2.0))
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    return crop(img, i, j, th, tw)


def hflip(img):
    """Horizontally flips the given image.

    Args:
        img (np.array): Image to be flipped.

    Returns:
        np.array:  Horizontall flipped image.

    """
    cv2 = try_import('cv2')

    return cv2.flip(img, 1)


def vflip(img):
    """Vertically flips the given np.array.

    Args:
        img (np.array): Image to be flipped.

    Returns:
        np.array:  Vertically flipped image.

    """
    cv2 = try_import('cv2')

    if len(img.shape) == 3 and img.shape[2] == 1:
        return cv2.flip(img, 0)[:, :, np.newaxis]
    else:
        return cv2.flip(img, 0)


def adjust_brightness(img, brightness_factor):
    """Adjusts brightness of an image.

    Args:
        img (np.array): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        np.array: Brightness adjusted image.

    """
    cv2 = try_import('cv2')

323 324 325 326 327
    table = (
        np.array([i * brightness_factor for i in range(0, 256)])
        .clip(0, 255)
        .astype('uint8')
    )
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

    if len(img.shape) == 3 and img.shape[2] == 1:
        return cv2.LUT(img, table)[:, :, np.newaxis]
    else:
        return cv2.LUT(img, table)


def adjust_contrast(img, contrast_factor):
    """Adjusts contrast of an image.

    Args:
        img (np.array): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        np.array: Contrast adjusted image.

    """
    cv2 = try_import('cv2')

350 351 352 353 354
    table = (
        np.array([(i - 74) * contrast_factor + 74 for i in range(0, 256)])
        .clip(0, 255)
        .astype('uint8')
    )
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    if len(img.shape) == 3 and img.shape[2] == 1:
        return cv2.LUT(img, table)[:, :, np.newaxis]
    else:
        return cv2.LUT(img, table)


def adjust_saturation(img, saturation_factor):
    """Adjusts color saturation of an image.

    Args:
        img (np.array): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        np.array: Saturation adjusted image.

    """
    cv2 = try_import('cv2')

    dtype = img.dtype
    img = img.astype(np.float32)
378 379 380
    alpha = np.random.uniform(
        max(0, 1 - saturation_factor), 1 + saturation_factor
    )
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_img = gray_img[..., np.newaxis]
    img = img * alpha + gray_img * (1 - alpha)
    return img.clip(0, 255).astype(dtype)


def adjust_hue(img, hue_factor):
    """Adjusts hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    Args:
        img (np.array): Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        np.array: Hue adjusted image.

    """
    cv2 = try_import('cv2')

    if not (-0.5 <= hue_factor <= 0.5):
412
        raise ValueError(
413 414
            'hue_factor:{} is not in [-0.5, 0.5].'.format(hue_factor)
        )
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    dtype = img.dtype
    img = img.astype(np.uint8)
    hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
    h, s, v = cv2.split(hsv_img)

    alpha = np.random.uniform(hue_factor, hue_factor)
    h = h.astype(np.uint8)
    # uint8 addition take cares of rotation across boundaries
    with np.errstate(over="ignore"):
        h += np.uint8(alpha * 255)
    hsv_img = cv2.merge([h, s, v])
    return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype)


430 431 432 433 434 435 436 437 438 439
def affine(
    img,
    angle,
    translate,
    scale,
    shear,
    interpolation='nearest',
    fill=0,
    center=None,
):
440 441 442 443 444 445 446 447 448
    """Affine the image by matrix.

    Args:
        img (PIL.Image): Image to be affined.
        translate (sequence or int): horizontal and vertical translations
        scale (float): overall scale ratio
        shear (sequence or float): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
            the second value corresponds to a shear parallel to the y axis.
449
        interpolation (int|str, optional): Interpolation method. If omitted, or if the
450
            image has only one channel, it is set to cv2.INTER_NEAREST.
451 452 453
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            - "bicubic": cv2.INTER_CUBIC
        fill (3-tuple or int): RGB pixel fill value for area outside the affined image.
            If int, it is used for all channels respectively.
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.

    Returns:
        np.array: Affined image.

    """
    cv2 = try_import('cv2')
    _cv2_interp_from_str = {
        'nearest': cv2.INTER_NEAREST,
        'bilinear': cv2.INTER_LINEAR,
        'area': cv2.INTER_AREA,
        'bicubic': cv2.INTER_CUBIC,
470
        'lanczos': cv2.INTER_LANCZOS4,
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    }

    h, w = img.shape[0:2]

    if isinstance(fill, int):
        fill = tuple([fill] * 3)

    if center is None:
        center = (w / 2.0, h / 2.0)

    M = np.ones([2, 3])
    # Rotate and Scale
    R = cv2.getRotationMatrix2D(angle=angle, center=center, scale=scale)

    # Shear
    sx = math.tan(shear[0] * math.pi / 180)
    sy = math.tan(shear[1] * math.pi / 180)
    M[0] = R[0] + sy * R[1]
    M[1] = R[1] + sx * R[0]

    # Translation
    tx, ty = translate
    M[0, 2] = tx
    M[1, 2] = ty

    if len(img.shape) == 3 and img.shape[2] == 1:
497 498 499 500 501 502 503
        return cv2.warpAffine(
            img,
            M,
            dsize=(w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill,
        )[:, :, np.newaxis]
504
    else:
505 506 507 508 509 510 511 512 513 514 515 516
        return cv2.warpAffine(
            img,
            M,
            dsize=(w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill,
        )


def rotate(
    img, angle, interpolation='nearest', expand=False, center=None, fill=0
):
517 518 519 520 521
    """Rotates the image by angle.

    Args:
        img (np.array): Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
522
        interpolation (int|str, optional): Interpolation method. If omitted, or if the
523
            image has only one channel, it is set to cv2.INTER_NEAREST.
524 525 526
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
            - "bicubic": cv2.INTER_CUBIC
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively.

    Returns:
        np.array: Rotated image.

    """
    cv2 = try_import('cv2')
543 544 545 546 547
    _cv2_interp_from_str = {
        'nearest': cv2.INTER_NEAREST,
        'bilinear': cv2.INTER_LINEAR,
        'area': cv2.INTER_AREA,
        'bicubic': cv2.INTER_CUBIC,
548
        'lanczos': cv2.INTER_LANCZOS4,
549
    }
550

551
    h, w = img.shape[0:2]
552
    if center is None:
553
        center = (w / 2.0, h / 2.0)
554
    M = cv2.getRotationMatrix2D(center, angle, 1)
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

    if expand:

        def transform(x, y, matrix):
            (a, b, c, d, e, f) = matrix
            return a * x + b * y + c, d * x + e * y + f

        # calculate output size
        xx = []
        yy = []

        angle = -math.radians(angle)
        expand_matrix = [
            round(math.cos(angle), 15),
            round(math.sin(angle), 15),
            0.0,
            round(-math.sin(angle), 15),
            round(math.cos(angle), 15),
            0.0,
        ]

        post_trans = (0, 0)
        expand_matrix[2], expand_matrix[5] = transform(
578 579 580 581
            -center[0] - post_trans[0],
            -center[1] - post_trans[1],
            expand_matrix,
        )
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        expand_matrix[2] += center[0]
        expand_matrix[5] += center[1]

        for x, y in ((0, 0), (w, 0), (w, h), (0, h)):
            x, y = transform(x, y, expand_matrix)
            xx.append(x)
            yy.append(y)
        nw = math.ceil(max(xx)) - math.floor(min(xx))
        nh = math.ceil(max(yy)) - math.floor(min(yy))

        M[0, 2] += (nw - w) * 0.5
        M[1, 2] += (nh - h) * 0.5

        w, h = int(nw), int(nh)

597
    if len(img.shape) == 3 and img.shape[2] == 1:
598 599 600 601 602 603 604
        return cv2.warpAffine(
            img,
            M,
            (w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill,
        )[:, :, np.newaxis]
605
    else:
606 607 608 609 610 611 612
        return cv2.warpAffine(
            img,
            M,
            (w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill,
        )
613 614


615 616 617 618 619 620 621
def perspective(img, startpoints, endpoints, interpolation='nearest', fill=0):
    """Perspective the image.

    Args:
        img (np.array): Image to be perspectived.
        startpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the original image,
        endpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the transformed image.
622
        interpolation (int|str, optional): Interpolation method. If omitted, or if the
623
            image has only one channel, it is set to cv2.INTER_NEAREST.
624 625 626
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
627 628 629 630 631 632 633 634 635 636 637 638 639 640
            - "bicubic": cv2.INTER_CUBIC
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively.

    Returns:
        np.array: Perspectived image.

    """
    cv2 = try_import('cv2')
    _cv2_interp_from_str = {
        'nearest': cv2.INTER_NEAREST,
        'bilinear': cv2.INTER_LINEAR,
        'area': cv2.INTER_AREA,
        'bicubic': cv2.INTER_CUBIC,
641
        'lanczos': cv2.INTER_LANCZOS4,
642 643 644 645 646 647 648 649
    }
    h, w = img.shape[0:2]

    startpoints = np.array(startpoints, dtype="float32")
    endpoints = np.array(endpoints, dtype="float32")
    matrix = cv2.getPerspectiveTransform(startpoints, endpoints)

    if len(img.shape) == 3 and img.shape[2] == 1:
650 651 652 653 654 655 656
        return cv2.warpPerspective(
            img,
            matrix,
            dsize=(w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill,
        )[:, :, np.newaxis]
657
    else:
658 659 660 661 662 663 664
        return cv2.warpPerspective(
            img,
            matrix,
            dsize=(w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill,
        )
665 666


667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
def to_grayscale(img, num_output_channels=1):
    """Converts image to grayscale version of image.

    Args:
        img (np.array): Image to be converted to grayscale.

    Returns:
        np.array: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b

    """
    cv2 = try_import('cv2')

    if num_output_channels == 1:
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis]
    elif num_output_channels == 3:
        # much faster than doing cvtColor to go back to gray
        img = np.broadcast_to(
687 688
            cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis], img.shape
        )
689 690 691 692 693 694 695 696 697 698 699 700 701
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img


def normalize(img, mean, std, data_format='CHW', to_rgb=False):
    """Normalizes a ndarray imge or image with mean and standard deviation.

    Args:
        img (np.array): input data to be normalized.
        mean (list|tuple): Sequence of means for each channel.
        std (list|tuple): Sequence of standard deviations for each channel.
702
        data_format (str, optional): Data format of img, should be 'HWC' or
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.

    Returns:
        np.array: Normalized mage.

    """

    if data_format == 'CHW':
        mean = np.float32(np.array(mean).reshape(-1, 1, 1))
        std = np.float32(np.array(std).reshape(-1, 1, 1))
    else:
        mean = np.float32(np.array(mean).reshape(1, 1, -1))
        std = np.float32(np.array(std).reshape(1, 1, -1))
    if to_rgb:
        # inplace
719
        img = img[..., ::-1]
720 721 722

    img = (img - mean) / std
    return img
723 724 725 726 727


def erase(img, i, j, h, w, v, inplace=False):
    """Erase the pixels of selected area in input image array with given value.

728 729 730 731 732 733 734 735
    Args:
         img (np.array): input image array, which shape is (H, W, C).
         i (int): y coordinate of the top-left point of erased region.
         j (int): x coordinate of the top-left point of erased region.
         h (int): Height of the erased region.
         w (int): Width of the erased region.
         v (np.array): value used to replace the pixels in erased region.
         inplace (bool, optional): Whether this transform is inplace. Default: False.
736

737 738
     Returns:
         np.array: Erased image.
739

740 741 742 743
    """
    if not inplace:
        img = img.copy()

744
    img[i : i + h, j : j + w, ...] = v
745
    return img