math.py 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
Jiabin Yang 已提交
15
from paddle.fluid.layer_helper import LayerHelper, _non_static_mode
16
from paddle.fluid.data_feeder import check_variable_and_dtype
17
from paddle import _C_ops, _legacy_C_ops
H
hong 已提交
18
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
19
import paddle.utils.deprecated as deprecated
20

Z
Zhong Hui 已提交
21 22
__all__ = []

23

24 25 26 27 28 29
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.segment_sum",
    level=1,
    reason="paddle.incubate.segment_sum will be removed in future",
)
30
def segment_sum(data, segment_ids, name=None):
Z
Zhong Hui 已提交
31
    r"""
32 33 34 35 36 37 38 39
    Segment Sum Operator.

    This operator sums the elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\sum_{j} data_{j}$
    where sum is over j such that `segment_ids[j] == i`.

    Args:
40
        data (Tensor): A tensor, available data type float32, float64, int32, int64.
41
        segment_ids (Tensor): A 1-D tensor, which have the same size
42
                            with the first dimension of input data.
43
                            Available data type is int32, int64.
44
        name (str, optional): Name for the operation (optional, default is None).
Z
Zhong Hui 已提交
45 46
                            For more information, please refer to :ref:`api_guide_Name`.

47 48 49 50 51 52 53 54 55 56 57 58 59 60
    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_sum(data, segment_ids)
            #Outputs: [[4., 4., 4.], [4., 5., 6.]]

    """
H
hong 已提交
61
    if in_dygraph_mode():
62
        return _C_ops.segment_pool(data, segment_ids, "SUM")[0]
H
hong 已提交
63
    if _in_legacy_dygraph():
64 65 66
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "SUM"
        )
67 68
        return out

69 70 71 72 73 74
    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64"), "segment_pool"
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
75 76 77 78

    helper = LayerHelper("segment_sum", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
79 80 81 82 83 84
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "SUM"},
    )
85 86 87
    return out


88 89 90 91 92 93
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.segment_mean",
    level=1,
    reason="paddle.incubate.segment_mean will be removed in future",
)
94
def segment_mean(data, segment_ids, name=None):
Z
Zhong Hui 已提交
95
    r"""
96 97 98 99 100 101 102 103 104
    Segment mean Operator.

    Ihis operator calculate the mean value of input `data` which
    with the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\frac{1}{n_i}  \\sum_{j} data[j]$
    where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number
    of all index 'segment_ids[j] == i'.

    Args:
105
        data (tensor): a tensor, available data type float32, float64, int32, int64.
106 107
        segment_ids (tensor): a 1-d tensor, which have the same size
                            with the first dimension of input data.
108
                            available data type is int32, int64.
109
        name (str, optional): Name for the operation (optional, default is None).
Z
Zhong Hui 已提交
110
                            For more information, please refer to :ref:`api_guide_Name`.
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_mean(data, segment_ids)
            #Outputs: [[2., 2., 2.], [4., 5., 6.]]

    """
H
hong 已提交
126 127

    if in_dygraph_mode():
128
        return _C_ops.segment_pool(data, segment_ids, "MEAN")[0]
J
Jiabin Yang 已提交
129
    if _non_static_mode():
130 131 132
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "MEAN"
        )
133 134
        return out

135 136 137 138 139 140
    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64"), "segment_pool"
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
141 142 143 144

    helper = LayerHelper("segment_mean", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
145 146 147 148 149 150
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "MEAN"},
    )
151 152 153
    return out


154 155 156 157 158 159
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.segment_min",
    level=1,
    reason="paddle.incubate.segment_min will be removed in future",
)
160
def segment_min(data, segment_ids, name=None):
Z
Zhong Hui 已提交
161
    r"""
162 163 164 165 166 167 168 169
    Segment min operator.

    This operator calculate the minimum elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\min_{j} data_{j}$
    where min is over j such that `segment_ids[j] == i`.

    Args:
170
        data (tensor): a tensor, available data type float32, float64, int32, int64.
171
        segment_ids (tensor): a 1-d tensor, which have the same size
172
                            with the first dimension of input data.
173
                            available data type is int32, int64.
174
        name (str, optional): Name for the operation (optional, default is None).
Z
Zhong Hui 已提交
175 176
                            For more information, please refer to :ref:`api_guide_Name`.

177 178 179 180 181 182 183 184 185 186 187 188 189 190
    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_min(data, segment_ids)
            #Outputs:  [[1., 2., 1.], [4., 5., 6.]]

    """
H
hong 已提交
191 192

    if in_dygraph_mode():
193
        return _C_ops.segment_pool(data, segment_ids, "MIN")[0]
H
hong 已提交
194

J
Jiabin Yang 已提交
195
    if _non_static_mode():
196 197 198
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "MIN"
        )
199 200
        return out

201 202 203 204 205 206
    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64"), "segment_pool"
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
207 208 209 210

    helper = LayerHelper("segment_min", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
211 212 213 214 215 216
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "MIN"},
    )
217 218 219
    return out


220 221 222 223 224 225
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.segment_max",
    level=1,
    reason="paddle.incubate.segment_max will be removed in future",
)
226
def segment_max(data, segment_ids, name=None):
Z
Zhong Hui 已提交
227
    r"""
228 229 230 231
    Segment max operator.

    This operator calculate the maximum elements of input `data` which with
    the same index in `segment_ids`.
Z
Zhong Hui 已提交
232
    It computes a tensor such that $out_i = \\max_{j} data_{j}$
233 234 235
    where max is over j such that `segment_ids[j] == i`.

    Args:
236
        data (tensor): a tensor, available data type float32, float64, int32, int64.
237
        segment_ids (tensor): a 1-d tensor, which have the same size
238
                            with the first dimension of input data.
239
                            available data type is int32, int64.
240
        name (str, optional): Name for the operation (optional, default is None).
Z
Zhong Hui 已提交
241
                            For more information, please refer to :ref:`api_guide_Name`.
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_max(data, segment_ids)
            #Outputs: [[3., 2., 3.], [4., 5., 6.]]

    """
H
hong 已提交
257 258

    if in_dygraph_mode():
259
        out, tmp = _C_ops.segment_pool(data, segment_ids, "MAX")
H
hong 已提交
260 261
        return out

J
Jiabin Yang 已提交
262
    if _non_static_mode():
263 264 265
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "MAX"
        )
266 267
        return out

268 269 270 271 272 273
    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64"), "segment_pool"
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
274 275 276 277

    helper = LayerHelper("segment_max", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
278 279 280 281 282 283
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "MAX"},
    )
284
    return out