test_pixel_shuffle.py 8.2 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
R
ruri 已提交
17

R
ruri 已提交
18
from op_test import OpTest
R
ruri 已提交
19 20 21 22
import paddle
import paddle.nn.functional as F
import paddle.fluid.core as core
import paddle.fluid as fluid
R
ruri 已提交
23 24


R
ruri 已提交
25 26 27
def pixel_shuffle_np(x, up_factor, data_format="NCHW"):
    if data_format == "NCHW":
        n, c, h, w = x.shape
28 29 30 31 32 33 34 35
        new_shape = (
            n,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
            h,
            w,
        )
R
ruri 已提交
36 37 38 39 40 41
        # reshape to (num,output_channel,upscale_factor,upscale_factor,h,w)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,output_channel,h,upscale_factor,w,upscale_factor)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor]
        npresult = np.reshape(npresult, oshape)
R
ruri 已提交
42 43 44
        return npresult
    else:
        n, h, w, c = x.shape
45 46 47 48 49 50 51 52
        new_shape = (
            n,
            h,
            w,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
        )
R
ruri 已提交
53 54 55 56 57 58 59 60 61 62 63 64
        # reshape to (num,h,w,output_channel,upscale_factor,upscale_factor)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,h,upscale_factor,w,upscale_factor,output_channel)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, h * up_factor, w * up_factor, c // (up_factor * up_factor)]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelShuffleOp(OpTest):
    def setUp(self):
        self.op_type = "pixel_shuffle"
H
hong 已提交
65
        self.python_api = paddle.nn.functional.pixel_shuffle
R
ruri 已提交
66 67 68 69 70 71 72 73 74 75 76 77
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        up_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_shuffle_np(x, up_factor, self.format)
R
ruri 已提交
78 79 80

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
R
ruri 已提交
81 82 83 84
        self.attrs = {'upscale_factor': up_factor, "data_format": self.format}

    def init_data_format(self):
        self.format = "NCHW"
R
ruri 已提交
85 86

    def test_check_output(self):
H
hong 已提交
87
        self.check_output(check_eager=True)
R
ruri 已提交
88 89

    def test_check_grad(self):
H
hong 已提交
90
        self.check_grad(['X'], 'Out', check_eager=True)
R
ruri 已提交
91 92


R
ruri 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
class TestChannelLast(TestPixelShuffleOp):
    def init_data_format(self):
        self.format = "NHWC"


class TestPixelShuffleAPI(unittest.TestCase):
    def setUp(self):
        self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
        self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
        self.out_1_np = pixel_shuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
106 107 108
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
109 110 111
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
112 113 114 115 116 117
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
118 119 120 121
            out_1 = F.pixel_shuffle(x_1, 3)
            out_2 = F.pixel_shuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
122 123 124 125 126 127 128 129 130 131 132 133 134
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
135 136 137 138 139 140

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
141 142 143
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
144 145 146
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
147 148 149 150 151 152
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
153 154 155 156 157 158 159 160 161
            # init instance
            ps_1 = paddle.nn.PixelShuffle(3)
            ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_shuffle_np(self.x_1_np, 3)
            out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
162 163 164 165 166 167 168 169 170 171 172 173 174
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, up_factor, data_format):

        n, c, h, w = 2, 9, 4, 4

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_shuffle_np(x, up_factor, data_format)

192 193 194
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
195 196 197 198
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

199 200 201
            pixel_shuffle = paddle.nn.PixelShuffle(
                up_factor, data_format=data_format
            )
R
ruri 已提交
202 203
            result = pixel_shuffle(paddle.to_tensor(x))

204
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
R
ruri 已提交
205

206 207 208 209 210 211
            result_functional = F.pixel_shuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
R
ruri 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    def test_dygraph1(self):
        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        self.run_dygraph(3, "NHWC")


class TestPixelShuffleError(unittest.TestCase):
    def test_error_functional(self):
        def error_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_upscale_factor)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3, "WOW")

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        def error_upscale_factor_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3.33)

        self.assertRaises(TypeError, error_upscale_factor_layer)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


R
ruri 已提交
252
if __name__ == '__main__':
H
hong 已提交
253
    paddle.enable_static()
R
ruri 已提交
254
    unittest.main()