test_momentum_op.py 36.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sidgoyal78 已提交
15 16
import unittest
import numpy as np
17 18
import paddle.fluid.core as core
from paddle.fluid.op import Operator
19
from op_test import OpTest
J
Jiawei Wang 已提交
20 21
import paddle
import paddle.fluid as fluid
22
import numpy
23
from paddle.fluid.framework import _test_eager_guard
S
sidgoyal78 已提交
24 25


26 27 28 29 30 31 32 33 34 35
def calculate_momentum_by_numpy(
    param,
    grad,
    mu,
    velocity,
    use_nesterov,
    learning_rate,
    regularization_method=None,
    regularization_coeff=1.0,
):
36 37 38 39 40 41 42 43 44 45 46
    if regularization_method == "l2_decay":
        grad = grad + regularization_coeff * param

        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - (grad + velocity_out * mu) * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
    else:
        velocity_out = mu * velocity + grad
        if use_nesterov:
47 48 49
            param_out = (
                param - grad * learning_rate - velocity_out * mu * learning_rate
            )
50 51 52 53 54 55
        else:
            param_out = param - learning_rate * velocity_out

    return param_out, velocity_out


K
kavyasrinet 已提交
56
class TestMomentumOp1(OpTest):
S
sidgoyal78 已提交
57 58
    def setUp(self):
        self.op_type = "momentum"
W
Wu Yi 已提交
59 60
        self.dtype = np.float32
        self.init_dtype()
S
sidgoyal78 已提交
61

W
Wu Yi 已提交
62 63 64
        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
65
        learning_rate = np.array([0.001]).astype(np.float32)
S
sidgoyal78 已提交
66
        mu = 0.0001
K
kavyasrinet 已提交
67
        use_nesterov = False
S
sidgoyal78 已提交
68 69 70 71 72

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
73
            'LearningRate': learning_rate,
S
sidgoyal78 已提交
74 75 76 77
        }

        self.attrs = {'mu': mu}

78 79 80 81 82 83
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
84 85
            learning_rate=learning_rate,
        )
K
kavyasrinet 已提交
86 87 88

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

W
Wu Yi 已提交
89 90 91
    def init_dtype(self):
        pass

K
kavyasrinet 已提交
92 93 94 95
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
96 97 98 99 100 101 102 103
class TestMomentumOpFp16(TestMomentumOp1):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


K
kavyasrinet 已提交
104
class TestMomentumOp2(OpTest):
105
    '''Test Momentum with default values for attributes'''
K
kavyasrinet 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    def setUp(self):
        self.op_type = "momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
121
            'LearningRate': learning_rate,
K
kavyasrinet 已提交
122 123
        }

124
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
125

126 127 128 129 130 131
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
132 133
            learning_rate=learning_rate,
        )
S
sidgoyal78 已提交
134 135 136 137 138 139 140

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


141 142 143
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
144 145
class TestLarsMomentumOpWithMP(OpTest):
    def setUp(self):
L
limingshu 已提交
146
        self.config()
147 148 149 150 151 152
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005
        rescale_grad = 1.0

L
limingshu 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        params = []
        grads = []
        velocitys = []
        learning_rates = []
        master_params = []
        param_outs = []
        velocity_outs = []
        master_param_outs = []
        for i in range(self.params_num):
            master_param = np.random.random((123, 321)).astype("float32")
            param = master_param.astype("float16")
            grad = np.random.random((123, 321)).astype("float16")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")

            fp32_grad = grad.astype("float32")
            pnorm = np.sqrt(np.square(master_param).sum())
            gnorm = np.sqrt(np.square(fp32_grad).sum())
171 172 173 174 175 176
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * pnorm)
            )
L
limingshu 已提交
177 178
            fp32_grad = fp32_grad * rescale_grad
            velocity_out = mu * velocity + local_lr * (
179 180
                fp32_grad + lars_weight_decay * master_param
            )
L
limingshu 已提交
181 182 183 184 185 186 187 188 189 190 191 192
            p_new = master_param - velocity_out
            param_out = p_new.astype("float16")
            master_param_out = p_new

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))
            master_params.append(("SubMasterParam_" + str(i), master_param))
            master_param_outs.append(
193 194
                ("SubMasterParamOut_" + str(i), master_param_out)
            )
L
limingshu 已提交
195

196
        self.inputs = {
L
limingshu 已提交
197 198 199 200 201
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
            'LearningRate': learning_rates,
            'MasterParam': master_params,
202 203 204 205 206
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
L
limingshu 已提交
207
            'lars_weight_decay': [lars_weight_decay],
208
            'multi_precision': True,
209
            'rescale_grad': rescale_grad,
210 211 212
        }

        self.outputs = {
L
limingshu 已提交
213 214
            'ParamOut': param_outs,
            'VelocityOut': velocity_outs,
215
            'MasterParamOut': master_param_outs,
216 217 218 219 220 221 222 223 224
        }

    def test_check_output(self):
        paddle.enable_static()
        if core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place)

L
limingshu 已提交
225 226 227
    def config(self):
        self.params_num = 1

228

229 230
class TestLarsMomentumOp(OpTest):
    def setUp(self):
L
limingshu 已提交
231
        self.config()
232 233 234 235 236
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

L
limingshu 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
        params = []
        grads = []
        velocitys = []
        param_outs = []
        velocity_outs = []
        learning_rates = []
        for i in range(self.params_num):
            param = np.random.random((123, 321)).astype("float32")
            grad = np.random.random((123, 321)).astype("float32")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")
            pnorm = np.sqrt(np.square(param).sum())
            gnorm = np.sqrt(np.square(grad).sum())
250 251 252 253 254 255
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * param)
            )
256
            velocity_out = mu * velocity + local_lr * (
257 258
                grad + lars_weight_decay * param
            )
L
limingshu 已提交
259 260 261 262 263 264 265 266 267
            param_out = param - velocity_out

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))

268
        self.inputs = {
L
limingshu 已提交
269 270 271
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
272
            'LearningRate': learning_rates,
273 274 275 276 277
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
278
            'lars_weight_decay': [lars_weight_decay],
279
        }
L
limingshu 已提交
280
        self.outputs = {'ParamOut': param_outs, 'VelocityOut': velocity_outs}
281 282

    def test_check_output(self):
283
        paddle.enable_static()
284 285
        self.check_output()

L
limingshu 已提交
286 287 288
    def config(self):
        self.params_num = 1

289

290 291 292
class TestSparseMomentumOp(unittest.TestCase):
    def setUp(self):
        self.use_nesterov = False
293 294
        self.regularization_method = ""
        self.regularization_coeff = 1.0
295 296 297 298 299 300 301 302 303 304

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
305 306
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
325 326 327 328
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
329 330 331
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
D
dzhwinter 已提交
332
        velocity_out.set(velocity_out_np_array, place)
333

334
        # create and initialize LearningRate Variable
335 336 337 338 339
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
340 341 342 343 344 345 346 347 348 349 350 351 352
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
        )
353 354 355 356
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
357
        velocity_out_np_array = np.array(velocity_out)
358 359 360

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
361 362 363
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
364

D
dzhwinter 已提交
365
        _param = param_array
366 367 368 369 370 371 372 373 374

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
375 376
            regularization_coeff=regularization_coeff,
        )
377

378
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
379
        self.assertTrue((_param_out == param_out_np_array).all())
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
    def init_kernel(self):
        self.use_nesterov = True


397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
class TestSparseMomentumOpWithMultiPrecision(unittest.TestCase):
    def setUp(self):
        self.init_args()
        self.regularization_method = ""
        self.regularization_coeff = 1.0

    def check_with_place(self, place):
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        # create and initialize Param Variable
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")

        param = scope.var('Param').get_tensor()
        param.set(param_array.astype("float16"), place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out.set(param_out_array.astype("float16"), place)

        master_param = scope.var('MasterParam').get_tensor()
        master_param.set(param_array, place)
        master_param_out = scope.var("MasterParamOut").get_tensor()
        master_param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array.astype("float16"), place)

        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
441 442 443
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
444 445 446 447 448 449 450 451
        velocity_out.set(velocity_out_np_array, place)

        # create and initialize LearningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            MasterParam='MasterParam',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            MasterParamOut='MasterParamOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
            multi_precision=True,
            rescale_grad=1.0,
        )
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
        velocity_out_np_array = np.array(velocity_out)

        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]

        _param = param_array

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
489 490
            regularization_coeff=regularization_coeff,
        )
491 492 493 494 495 496 497 498 499 500 501 502 503

        self.assertTrue((_velocity_out == velocity_out_np_array).all())
        self.assertTrue((_param_out == param_out_np_array).all())

    def init_args(self):
        self.use_nesterov = False

    def test_sparse_momentum(self):
        if core.is_compiled_with_cuda():
            self.check_with_place(fluid.CUDAPlace(0))


class TestSparseMomentumOpWithMultiPrecision2(
504 505
    TestSparseMomentumOpWithMultiPrecision
):
506 507 508 509
    def init_args(self):
        self.use_nesterov = True


J
Jiawei Wang 已提交
510 511 512 513 514 515 516
class TestMomentumV2(unittest.TestCase):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
517 518 519
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01, momentum=0.9, parameters=linear.parameters()
        )
J
Jiawei Wang 已提交
520 521 522 523 524 525
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_momentum(self):
526
        paddle.enable_static()
J
Jiawei Wang 已提交
527 528 529 530 531 532 533
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
534
            avg_cost = paddle.mean(cost)
J
Jiawei Wang 已提交
535

536 537 538
            rms_optimizer = paddle.optimizer.Momentum(
                learning_rate=0.1, momentum=0.9
            )
J
Jiawei Wang 已提交
539 540 541
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
542 543 544
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
J
Jiawei Wang 已提交
545 546 547 548 549 550 551
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
552 553 554
        self.assertRaises(
            ValueError, paddle.optimizer.Momentum, learning_rate=None
        )
J
Jiawei Wang 已提交
555 556
        self.assertRaises(ValueError, paddle.optimizer.Momentum, momentum=None)

557 558 559 560 561
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_momentum_dygraph()
            self.test_raise_error()

J
Jiawei Wang 已提交
562

563 564 565 566 567 568 569 570 571 572 573 574
class TestMomentumOpWithDecay(OpTest):
    def setUp(self):
        self.op_type = "momentum"
        self.dtype = np.float32
        self.use_nesterov = True
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9
        self.init_config()

        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
575
        learning_rate = np.array([0.001]).astype(np.float32)
576 577 578 579 580 581 582 583 584
        mu = 0.0001
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
585
            'LearningRate': learning_rate,
586 587 588 589 590 591
        }

        self.attrs = {
            'mu': mu,
            'use_nesterov': use_nesterov,
            'regularization_method': regularization_method,
592
            'regularization_coeff': regularization_coeff,
593 594 595 596 597 598 599 600 601 602
        }

        grad = grad + regularization_coeff * param

        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
603 604
            learning_rate=learning_rate,
        )
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def init_config(self):
        pass

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()


class TestMomentumOpWithDecayFP16(TestMomentumOpWithDecay):
    def init_config(self):
        self.dtype = np.float16

    def test_check_output(self):
        paddle.enable_static()
        self.check_output(atol=1e-3)


class TestMomentumOpWithDecay2(TestMomentumOpWithDecay):
    def init_config(self):
        self.use_nesterov = False


class TestSparseMomentumOpWithDecay(TestSparseMomentumOp):
    def setUp(self):
        self.use_nesterov = False
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9


class TestSparseMomentumOpWithDecay2(TestSparseMomentumOpWithDecay):
    def init_kernel(self):
        self.use_nesterov = True


class TestMomentumOpWithDecayAPI(unittest.TestCase):
    def _test_momentum_dygraph_common(self, regularization):
        paddle.disable_static()
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
        inp = paddle.to_tensor(inp)
        out = linear(inp)
        loss = paddle.mean(out)
        # This can be any optimizer supported by dygraph.
        momentum = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear.parameters(),
655 656
            regularization=regularization,
        )
657 658 659 660 661
        momentum.minimize(loss)

    def test_momentum_dygraph_1(self):
        self._test_momentum_dygraph_common(
            regularization=paddle.fluid.regularizer.L2Decay(
662 663 664
                regularization_coeff=0.1
            )
        )
665 666 667 668 669 670 671 672 673 674

    def test_momentum_static(self):
        paddle.enable_static()
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
675
            avg_cost = paddle.mean(cost)
676 677

            momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
678 679
                learning_rate=0.1, momentum=0.9
            )
680 681 682
            momentum_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
683 684 685
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
686 687 688 689 690 691 692
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


693 694 695 696
class TestFusedMomentumWithDecayAPI(unittest.TestCase):
    def get_program(self, weight_attr, bias_attr=False):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
697 698 699
        with paddle.static.program_guard(
            main_program=main_program, startup_program=startup_program
        ):
700
            x = paddle.static.data(name='x', shape=[10, 10])
701 702 703
            linear = paddle.nn.Linear(
                10, 10, weight_attr=weight_attr, bias_attr=bias_attr
            )
704 705 706 707 708
            out = linear(x)
            loss = paddle.mean(out)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.01,
                momentum=0.9,
709 710
                weight_decay=paddle.regularizer.L2Decay(0.5),
            )
711 712 713 714 715 716 717 718
            optimizer.minimize(loss)
        return main_program

    def test_param_has_l2decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
719 720
            regularizer=paddle.regularizer.L2Decay(0.1),
        )
721 722 723 724 725 726 727 728 729 730 731 732 733 734
        program = self.get_program(weight_attr, bias_attr=False)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.1))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)

    def test_param_has_l1decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
735 736
            regularizer=paddle.regularizer.L1Decay(0.1),
        )
737 738
        bias_attr = paddle.ParamAttr(
            name="bias",
739 740 741
            initializer=paddle.nn.initializer.Constant(value=0.0),
            regularizer=None,
        )
742 743 744 745 746 747 748 749
        program = self.get_program(weight_attr, bias_attr)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].type, 'momentum')
        self.assertEqual(ops[-2].type, 'momentum')
        self.assertEqual(ops[-3].type, 'sum')
        self.assertEqual(ops[-4].type, 'scale')
        self.assertEqual(ops[-5].type, 'sign')
750
        self.assertEqual(ops[-6].type, 'matmul_v2_grad')
751 752 753 754 755
        if 'weight' in ops[-1].input('Param'):
            self.assertEqual(ops[-1].attr('regularization_method'), '')
            self.assertEqual(ops[-1].attr('regularization_coeff'), 0)
        if 'bias' in ops[-2].input('Param'):
            self.assertEqual(ops[-2].attr('regularization_method'), 'l2_decay')
756 757 758
            self.assertEqual(
                ops[-2].attr('regularization_coeff'), np.float32(0.5)
            )
759 760 761 762 763 764 765 766 767 768 769 770

    def test_param_has_no_regularizer(self):
        paddle.enable_static()
        program = self.get_program(weight_attr=None)
        ops = program.global_block().ops
        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.5))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)


771 772 773
class TestMomentumOpVsMomentumOpWithDecayAPI(unittest.TestCase):
    def __update_params(self, momentum, linear):
        for i in range(10):
774 775 776
            inp = paddle.full(
                shape=[2, 2], fill_value=i, dtype='float32'
            ).astype("float32")
777 778 779 780 781
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            loss.backward()
            momentum.minimize(loss)
782
            linear.clear_gradients()
783 784 785 786 787 788 789 790

    def __test_vs(self, place=fluid.CPUPlace()):
        paddle.disable_static(place=place)

        linear_old = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
791 792
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
793 794 795 796 797
        momentum_old = paddle.fluid.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_old.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
798 799 800
                regularization_coeff=0.1
            ),
        )
801 802 803 804 805 806
        self.__update_params(momentum=momentum_old, linear=linear_old)

        linear_new = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
807 808
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
809 810 811 812 813
        momentum_new = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_new.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
814 815 816
                regularization_coeff=0.1
            ),
        )
817 818 819 820 821
        self.__update_params(momentum=momentum_new, linear=linear_new)

        self.assertEqual(
            (linear_old.weight.numpy() == linear_new.weight.numpy()).all(),
            True,
822 823
            'the param weight updated by two Momentum optimizers should equal',
        )
824 825 826 827 828 829 830 831 832 833

    def test_vs(self, place=fluid.CPUPlace()):
        places = [fluid.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            self.__test_vs(place=place)


834 835 836 837 838 839 840 841
class TestMomentumV2Group(TestMomentumV2):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
842 843 844 845 846 847 848 849 850 851 852 853 854 855
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'momentum': 0.99,
                },
            ],
            weight_decay=0.1,
            momentum=0.9,
        )
856 857 858 859 860 861 862
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


863
class TestMultiTensorMomentumDygraph(unittest.TestCase):
864 865 866 867 868 869 870 871
    def _momentum_optimize_dygraph(
        self,
        place,
        use_param_attr=False,
        use_param_group=False,
        use_amp=False,
        use_multi_tensor=False,
    ):
872 873 874 875 876 877 878
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)
        input = paddle.randn((5, 5))
        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
879 880
            trainable=True,
        )
881 882 883 884 885 886 887 888
        if use_param_attr:
            model = paddle.nn.Linear(5, 5, weight_attr)
        else:
            model = paddle.nn.Linear(5, 5)
        if not use_param_group:
            optimizer = paddle.optimizer.Momentum(
                parameters=model.parameters(),
                use_multi_tensor=use_multi_tensor,
889 890
                multi_precision=use_amp,
            )
891 892
        else:
            optimizer = paddle.optimizer.Momentum(
893 894 895 896 897 898 899 900
                parameters=[
                    {
                        'params': model.parameters(),
                        'weight_decay': 0.001,
                        'learning_rate': 0.1,
                        'momentum': 0.99,
                    }
                ],
901
                use_multi_tensor=use_multi_tensor,
902 903
                multi_precision=use_amp,
            )
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
        for idx in range(5):
            if place == 'gpu' and use_amp == True:
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
            if place == 'gpu' and use_amp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad(set_to_zero=False)
            else:
                output = model(input)
                loss = paddle.mean(output)
                # This can be any optimizer supported by dygraph.
                loss.backward()
                optimizer.step()
                optimizer.clear_grad(set_to_zero=False)
        return output, model.parameters()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
933 934
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
935
        output2, params2 = self._momentum_optimize_dygraph(
936 937
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
H
hong 已提交
938

939
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
940
        for idx in range(len(params1)):
941
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
942 943 944 945 946 947

    def _check_with_param_arrt(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
948 949
            use_multi_tensor=True,
        )
950 951 952 953
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
954 955
            use_multi_tensor=False,
        )
956
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
957
        for idx in range(len(params1)):
958
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
959 960 961 962 963 964

    def _check_with_param_group(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
965 966
            use_multi_tensor=True,
        )
967 968 969 970
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
971 972
            use_multi_tensor=False,
        )
973
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
974
        for idx in range(len(params1)):
975
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
976 977 978 979 980 981 982 983 984

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)

985 986 987 988
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_main()

989 990

class TestMultiTensorMomentumStatic(unittest.TestCase):
991 992 993
    def _momentum_optimize_static(
        self, place, use_amp=False, use_multi_tensor=False
    ):
994 995 996 997 998 999 1000 1001
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
1002 1003 1004
        optimizer = paddle.optimizer.Momentum(
            multi_precision=use_amp, use_multi_tensor=use_multi_tensor
        )
1005 1006 1007 1008 1009 1010
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
1011 1012
                use_fp16_guard=False,
            )
1013 1014
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
1015 1016 1017
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
1018
            else:
1019 1020 1021
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
1022
            hidden = paddle.static.nn.fc(x=data, size=10)
1023
            loss = paddle.mean(hidden)
1024 1025 1026 1027 1028 1029 1030 1031 1032
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = numpy.random.random(size=(2, 2)).astype('float16')
        else:
            x = numpy.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
1033 1034 1035
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
1046 1047 1048 1049 1050 1051
        output1 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
        output2 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
1052
        for idx in range(len(output1)):
1053
            np.testing.assert_allclose(output1[idx], output2[idx], rtol=1e-05)
1054 1055 1056 1057 1058 1059 1060 1061

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)


S
sidgoyal78 已提交
1062
if __name__ == "__main__":
H
hong 已提交
1063
    paddle.enable_static()
S
sidgoyal78 已提交
1064
    unittest.main()