test_collective_base.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import time
import os
import sys
import subprocess
import pickle
22
import tempfile
23 24 25 26 27 28 29 30 31
from contextlib import closing
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


class TestCollectiveRunnerBase(object):
    def get_model(self, train_prog, startup_prog):
        raise NotImplementedError(
32 33
            "get model should be implemented by child class."
        )
34 35 36 37 38 39 40

    def wait_server_ready(self, endpoints):
        while True:
            all_ok = True
            not_ready_endpoints = []
            for ep in endpoints:
                ip_port = ep.split(":")
41 42 43
                with closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)
                ) as sock:
44
                    sock.settimeout(2)
45 46
                    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
                    if hasattr(socket, 'SO_REUSEPORT'):
47 48 49
                        sock.setsockopt(
                            socket.SOL_SOCKET, socket.SO_REUSEPORT, 1
                        )
50

51 52 53 54 55 56
                    result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                    if result != 0:
                        all_ok = False
                        not_ready_endpoints.append(ep)
            if not all_ok:
                sys.stderr.write("server not ready, wait 3 sec to retry...\n")
57 58 59
                sys.stderr.write(
                    "not ready endpoints:" + str(not_ready_endpoints) + "\n"
                )
60 61 62 63 64
                sys.stderr.flush()
                time.sleep(3)
            else:
                break

65
    # endpoints should be ["ip1:port1","ip2:port2"]
66

67 68 69
    def initCommunicator(
        self, program, rank, nranks, wait_port, current_endpoint, endpoints
    ):
70 71 72 73 74
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            self.wait_server_ready(other_endpoints)
        block = program.global_block()
75 76 77 78 79
        nccl_id_var = block.create_var(
            name=nameGen.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW,
        )
80

81 82 83 84 85 86 87 88 89 90
        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
91

92 93 94 95 96 97 98 99 100 101
        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': self.global_ring_id,
            },
        )
102 103 104 105 106 107 108 109

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
110 111 112
        self.initCommunicator(
            startup_prog, rank, nranks, True, current_endpoint, endpoints
        )
L
lilong12 已提交
113
        self.rank = rank
114 115 116
        result = self.get_model(train_prog, startup_prog)
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(
117 118
            device_id
        )  # if args.use_gpu else fluid.CPUPlace()
119 120 121 122
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        np.random.seed(os.getpid())
        indata = np.random.random((10, 1000))
123 124 125
        out = exe.run(
            train_prog, feed={'tindata': indata}, fetch_list=[result.name]
        )
T
tianshuo78520a 已提交
126
        sys.stdout.buffer.write(pickle.dumps(out))
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149


def runtime_main(test_class, col_type, sub_type):
    args = {}
    model = test_class()
    args["deviceid"] = os.getenv("FLAGS_selected_gpus")
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    model.run_trainer(args)


import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
150 151 152
            self._find_free_port(),
            self._find_free_port(),
        )
153 154
        self._python_interp = sys.executable

155 156 157 158 159
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

160 161
    def _find_free_port(self):
        def __free_port():
162 163 164
            with closing(
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as s:
165 166 167 168 169 170 171 172 173 174 175 176
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
177
        # print("w0_ep:",w0_ep," w1_ep:",w1_ep)
178
        env0 = {
179
            "FLAGS_selected_gpus": "0",
180 181 182
            "PADDLE_TRAINER_ID": "0",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
183
            "PADDLE_CURRENT_ENDPOINT": w0_ep,
184 185 186
        }

        env1 = {
187
            "FLAGS_selected_gpus": "1",
188 189 190
            "PADDLE_TRAINER_ID": "1",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
191
            "PADDLE_CURRENT_ENDPOINT": w1_ep,
192
        }
193
        # update environment
194 195 196 197 198
        env0.update(envs)
        env1.update(envs)
        tr_cmd = "%s %s"
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
199 200 201 202
        path0 = os.path.join(self.temp_dir.name, "/tmp/tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, "/tmp/tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
203 204 205 206 207 208 209
        # print(tr0_cmd)
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0,
        )
210

211 212 213 214 215 216
        tr1_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1,
        )
217 218 219 220 221 222 223 224

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
225 226 227 228 229 230
        return (
            pickle.loads(tr0_out),
            pickle.loads(tr1_out),
            tr0_proc.pid,
            tr1_proc.pid,
        )
231

232 233 234
    def check_with_place(
        self, model_file, col_type, check_error_log=False, need_envs={}
    ):
235 236 237 238 239 240 241
        required_envs = {
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_eager_delete_tensor_gb": "0.0",
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
242
            "GLOG_v": "3",
243
            "NCCL_P2P_DISABLE": "1",
244 245 246 247 248
        }
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
249
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(
250 251
            model_file, required_envs
        )
252 253 254 255 256 257
        np.random.seed(pid0)
        input1 = np.random.random((10, 1000))
        np.random.seed(pid1)
        input2 = np.random.random((10, 1000))
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
258 259
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
260 261
        elif col_type == "broadcast":
            need_result = input2
262 263
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
L
lilong12 已提交
264 265
        elif col_type == "reduce":
            need_result = input1 + input2
266
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
L
lilong12 已提交
267 268
        elif col_type == "scatter":
            need_result = input2
269 270
            need_result1 = need_result[0 : need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2 :]
271 272
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
273 274
        elif col_type == "allreduce":
            need_result = input1 + input2
275 276 277 278 279 280
            np.testing.assert_allclose(
                tr0_out[0], need_result, rtol=1e-05, atol=1e-05
            )
            np.testing.assert_allclose(
                tr1_out[0], need_result, rtol=1e-05, atol=1e-05
            )
281 282
        elif col_type == "reduce_scatter":
            tmp = input1 + input2
283 284 285 286 287 288 289 290
            need_result1 = tmp[0 : tmp.shape[0] // 2]
            need_result2 = tmp[tmp.shape[0] // 2 :]
            np.testing.assert_allclose(
                tr0_out[0], need_result1, rtol=1e-05, atol=1e-05
            )
            np.testing.assert_allclose(
                tr1_out[0], need_result2, rtol=1e-05, atol=1e-05
            )
L
lilong12 已提交
291 292
        elif col_type == "sendrecv":
            need_result = input1
293 294 295
            np.testing.assert_allclose(
                tr1_out[0], need_result, rtol=1e-05, atol=1e-05
            )
L
lilong12 已提交
296 297 298
        elif col_type == "identity":
            need_result1 = input1
            need_result2 = input2
299 300
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=0, atol=0)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=0, atol=0)
301 302 303 304 305 306 307 308
        elif col_type == "reduce_slicegather":
            slicesize = input1.shape[0] // 2
            tmp10 = input1[0:slicesize]
            tmp11 = input2[0:slicesize]
            need_result1 = np.concatenate((tmp10, tmp11), axis=1)
            tmp20 = input1[slicesize:]
            tmp21 = input2[slicesize:]
            need_result2 = np.concatenate((tmp20, tmp21), axis=1)
309 310
            np.testing.assert_allclose(tr0_out, need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out, need_result2, rtol=1e-05)
L
lilong12 已提交
311 312
        elif col_type == "concat":
            need_result = np.concatenate((input1, input2), axis=1)
313 314 315 316 317 318
            np.testing.assert_allclose(
                tr0_out[0], need_result, rtol=1e-05, atol=1e-05
            )
            np.testing.assert_allclose(
                tr1_out[0], need_result, rtol=1e-05, atol=1e-05
            )
L
lilong12 已提交
319 320 321
        elif col_type == "split":
            need_result1 = np.split(input1, 2, axis=1)[0]
            need_result2 = np.split(input2, 2, axis=1)[1]
322 323 324 325 326 327
            np.testing.assert_allclose(
                tr0_out[0], need_result1, rtol=1e-05, atol=1e-05
            )
            np.testing.assert_allclose(
                tr1_out[0], need_result2, rtol=1e-05, atol=1e-05
            )
328 329 330
        elif col_type == "sendrecv_array":
            need_result1 = np.array([[0, 1, 2]])
            need_result2 = np.array([[3, 4, 5]])
331 332 333 334 335 336
            np.testing.assert_allclose(
                tr1_out[0][0], need_result1, rtol=1e-05, atol=1e-05
            )
            np.testing.assert_allclose(
                tr1_out[0][1], need_result2, rtol=1e-05, atol=1e-05
            )
337 338
        else:
            pass