dist_mnist_lars.py 2.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from test_dist_base import TestDistRunnerBase, runtime_main
from dist_mnist import cnn_model

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


class TestDistMnist2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        # Input data
        images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = cnn_model(images)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
37
        avg_cost = paddle.mean(x=cost)
38 39 40

        # Evaluator
        batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
41 42 43
        batch_acc = fluid.layers.accuracy(
            input=predict, label=label, total=batch_size_tensor
        )
44 45 46

        inference_program = fluid.default_main_program().clone()
        # Optimization
47 48 49
        opt = fluid.optimizer.LarsMomentumOptimizer(
            learning_rate=0.001, momentum=0.9
        )
50 51

        # Reader
52 53 54 55 56 57
        train_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size
        )
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size
        )
58
        opt.minimize(avg_cost)
59 60 61 62 63 64 65 66
        return (
            inference_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        )
67 68 69 70


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)