uniform.py 9.7 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16
from paddle import _C_ops, _legacy_C_ops
17
from paddle.distribution import distribution
18 19 20 21 22 23 24 25 26 27 28 29 30
from paddle.fluid.data_feeder import check_type, convert_dtype
from paddle.fluid.framework import (
    _non_static_mode,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from paddle.fluid.layers import (
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    nn,
    tensor,
)
31 32 33


class Uniform(distribution.Distribution):
34 35 36 37 38 39 40 41
    r"""Uniform distribution with `low` and `high` parameters.

    Mathematical Details

    The probability density function (pdf) is

    .. math::

42
        pdf(x; a, b) = \frac{1}{Z}, \ a <=x <b
43 44 45 46 47 48 49 50 51 52 53 54

    .. math::

        Z = b - a

    In the above equation:

    * :math:`low = a`,
    * :math:`high = b`,
    * :math:`Z`: is the normalizing constant.

    The parameters `low` and `high` must be shaped in a way that supports
55
    :ref:`user_guide_broadcasting` (e.g., `high - low` is a valid operation).
56 57

    Args:
58 59 60 61 62
        low(int|float|list|tuple|numpy.ndarray|Tensor): The lower boundary of
            uniform distribution.The data type is float32 and float64.
        high(int|float|list|tuple|numpy.ndarray|Tensor): The higher boundary
            of uniform distribution.The data type is float32 and float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
63 64 65 66

    Examples:
        .. code-block:: python

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            import paddle
            from paddle.distribution import Uniform

            # Without broadcasting, a single uniform distribution [3, 4]:
            u1 = Uniform(low=3.0, high=4.0)
            # 2 distributions [1, 3], [2, 4]
            u2 = Uniform(low=[1.0, 2.0], high=[3.0, 4.0])
            # 4 distributions
            u3 = Uniform(low=[[1.0, 2.0], [3.0, 4.0]],
                        high=[[1.5, 2.5], [3.5, 4.5]])

            # With broadcasting:
            u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            uniform = Uniform([0.], [2.])

            sample = uniform.sample([2])
            # a random tensor created by uniform distribution with shape: [2, 1]
            entropy = uniform.entropy()
            # [0.6931472] with shape: [1]
            lp = uniform.log_prob(value_tensor)
            # [-0.6931472] with shape: [1]
            p = uniform.probs(value_tensor)
            # [0.5] with shape: [1]
94 95 96
    """

    def __init__(self, low, high, name=None):
J
Jiabin Yang 已提交
97
        if not _non_static_mode():
98 99 100 101 102 103 104 105 106 107 108 109
            check_type(
                low,
                'low',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Uniform',
            )
            check_type(
                high,
                'high',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Uniform',
            )
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

        self.all_arg_is_float = False
        self.batch_size_unknown = False
        self.name = name if name is not None else 'Uniform'
        self.dtype = 'float32'

        if isinstance(low, int):
            low = float(low)
        if isinstance(high, int):
            high = float(high)

        if self._validate_args(low, high):
            self.batch_size_unknown = True
            self.low = low
            self.high = high
            self.dtype = convert_dtype(low.dtype)
        else:
            if isinstance(low, float) and isinstance(high, float):
                self.all_arg_is_float = True
129 130 131 132
            if isinstance(low, np.ndarray) and str(low.dtype) in [
                'float32',
                'float64',
            ]:
133
                self.dtype = low.dtype
134 135 136 137
            elif isinstance(high, np.ndarray) and str(high.dtype) in [
                'float32',
                'float64',
            ]:
138 139 140 141 142 143 144
                self.dtype = high.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.low, self.high = self._to_tensor(low, high)
            if self.dtype != convert_dtype(self.low.dtype):
                self.low = tensor.cast(self.low, dtype=self.dtype)
                self.high = tensor.cast(self.high, dtype=self.dtype)

145 146
        super(Uniform, self).__init__(self.low.shape)

147 148 149 150
    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
151 152
            shape (list): 1D `int32`. Shape of the generated samples.
            seed (int): Python integer number.
153 154

        Returns:
155
            Tensor, A tensor with prepended dimensions shape. The data type is float32.
156 157

        """
J
Jiabin Yang 已提交
158
        if not _non_static_mode():
159 160 161 162 163 164 165 166
            check_type(shape, 'shape', (list), 'sample')
            check_type(seed, 'seed', (int), 'sample')

        name = self.name + '_sample'
        batch_shape = list((self.low + self.high).shape)
        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
167 168
                self.low + self.high, batch_shape + shape, self.dtype, 0.0
            )
169 170 171 172
            uniform_random_tmp = nn.uniform_random_batch_size_like(
                zero_tmp,
                zero_tmp.shape,
                dtype=self.dtype,
173 174 175 176
                min=0.0,
                max=1.0,
                seed=seed,
            )
177
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
178 179 180 181 182 183
            uniform_random_tmp_reshape = nn.reshape(
                uniform_random_tmp, output_shape
            )
            output = uniform_random_tmp_reshape * (
                zero_tmp_reshape + self.high - self.low
            )
184 185 186 187 188
            output = elementwise_add(output, self.low, name=name)
            return output
        else:
            output_shape = shape + batch_shape
            output = nn.uniform_random(
189 190 191 192 193
                output_shape, dtype=self.dtype, min=0.0, max=1.0, seed=seed
            ) * (
                tensor.zeros(output_shape, dtype=self.dtype)
                + (self.high - self.low)
            )
194 195 196 197 198 199 200 201 202 203
            output = elementwise_add(output, self.low, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
204
            value (Tensor): The input tensor.
205 206

        Returns:
207
            Tensor, log probability.The data type is same with value.
208 209 210

        """
        value = self._check_values_dtype_in_probs(self.low, value)
J
Jiabin Yang 已提交
211
        if _non_static_mode():
212 213 214 215
            # ensure value in [low, high]
            lb_bool = self.low < value
            ub_bool = value < self.high

216 217 218 219 220 221
            if in_dygraph_mode():
                lb = _C_ops.cast(lb_bool, value.dtype)
                ub = _C_ops.cast(ub_bool, value.dtype)
                return nn.log(lb * ub) - nn.log(self.high - self.low)

            if _in_legacy_dygraph():
222 223 224 225 226 227
                lb = _legacy_C_ops.cast(
                    lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype', value.dtype
                )
                ub = _legacy_C_ops.cast(
                    ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype', value.dtype
                )
228
                return nn.log(lb * ub) - nn.log(self.high - self.low)
229 230 231 232 233 234

        name = self.name + '_log_prob'
        lb_bool = self.low < value
        ub_bool = value < self.high
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
235 236 237
        return elementwise_sub(
            nn.log(lb * ub), nn.log(self.high - self.low), name=name
        )
238 239 240 241 242

    def probs(self, value):
        """Probability density/mass function.

        Args:
243
            value (Tensor): The input tensor.
244 245

        Returns:
246
            Tensor, probability. The data type is same with value.
247 248 249

        """
        value = self._check_values_dtype_in_probs(self.low, value)
J
Jiabin Yang 已提交
250
        if _non_static_mode():
251 252 253
            lb_bool = self.low < value
            ub_bool = value < self.high

254 255 256 257 258 259
            if in_dygraph_mode():
                lb = _C_ops.cast(lb_bool, value.dtype)
                ub = _C_ops.cast(ub_bool, value.dtype)
                return (lb * ub) / (self.high - self.low)

            if _in_legacy_dygraph():
260 261 262 263 264 265
                lb = _legacy_C_ops.cast(
                    lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype', value.dtype
                )
                ub = _legacy_C_ops.cast(
                    ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype', value.dtype
                )
266
                return (lb * ub) / (self.high - self.low)
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

        name = self.name + '_probs'
        lb_bool = self.low < value
        ub_bool = value < self.high
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return elementwise_div((lb * ub), (self.high - self.low), name=name)

    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

            entropy(low, high) = \\log (high - low)

        Returns:
285
            Tensor, Shannon entropy of uniform distribution.The data type is float32.
286 287 288 289

        """
        name = self.name + '_entropy'
        return nn.log(self.high - self.low, name=name)