strategy_compiler.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
__all__ = []

17

18 19 20 21 22 23 24
def create_graph(optimizer_list):
    nsize = len(optimizer_list)

    edge = [[0] * nsize for _ in range(nsize)]  # adjacency matrix
    indegree = [0] * nsize
    for i, opt in enumerate(optimizer_list):
        for j, opt_inner in enumerate(optimizer_list):
25
            if opt._can_update(opt_inner):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
                edge[i][j] = 1  # weight
                indegree[j] += 1

    return edge, indegree


def topo_sort(edge, indegree):
    nsize = len(indegree)

    topo = [-1] * nsize
    for i in range(nsize):
        j = 0
        while j < nsize and indegree[j] != 0:
            j += 1
        assert j < nsize, 'The combination of meta optimizers contains ring'

        topo[i] = j
        indegree[j] = -1
        for k in range(nsize):
            if edge[j][k] != 0:
                indegree[k] -= 1

    return topo


def floyd(edge):
    nsize = len(edge)
    max_len = -1
    max_edge = [-1, -1]

    max_path = [[[] for _ in range(nsize)] for _ in range(nsize)]
    for i in range(nsize):
        for j in range(nsize):
            if edge[i][j] > 0:
                max_path[i][j] = [j]

                if edge[i][j] > max_len:
                    max_len = edge[i][j]
                    max_edge = [i, j]

    # use floyd algorithm to find max_path
    for k in range(nsize):
        for i in range(nsize):
            for j in range(nsize):
                # if a-->b-->c, but a-/->c, can only apply a-->b or b-->c,
                # however if a-->b-->c, and a-->c, can apply a->b->c
                if edge[i][j] == 0:
                    continue

                if edge[i][k] == 0 or edge[k][j] == 0:
                    continue

                if edge[i][j] < edge[i][k] + edge[k][j]:
                    edge[i][j] = edge[i][k] + edge[k][j]
                    max_path[i][j] = max_path[i][k] + max_path[k][j]

                    max_len = edge[i][j]
                    max_edge = [i, j]

    if max_len == -1:
        return [0]

    return [max_edge[0]] + max_path[max_edge[0]][max_edge[1]]


def maximum_path_len_algo(optimizer_list):
    if len(optimizer_list) == 0:
93
        return None
94 95 96 97 98 99 100 101 102 103 104 105 106

    edge, indegree = create_graph(optimizer_list)
    topo_sort(edge, indegree)
    max_path = floyd(edge)

    candidate = []
    for idx in max_path:
        candidate.append(optimizer_list[idx])

    for idx, opt in enumerate(candidate[:-1]):
        opt._update_inner_optimizer(candidate[idx + 1])

    return candidate
107 108 109 110 111 112 113 114 115 116 117


class StrategyCompilerBase(object):
    def __init__(self):
        pass


class StrategyCompiler(StrategyCompilerBase):
    """
    StrategyCompiler is responsible for meta optimizers combination
    Generally, a user can define serveral distributed strategies that
118
    can generate serveral meta optimizer. The combination of these
119 120 121 122 123 124 125 126
    meta optimizers should have the right order to apply the optimizers'
    minimize function.
    This class is responsible for the executable distributed optimizer
    generation.
    """

    def __init__(self):
        super(StrategyCompiler, self).__init__()
127 128
        self._meta_optimizers = []
        self._graph_optimizers = []
D
Dong Daxiang 已提交
129 130 131 132 133
        self._valid_optimizer_list = None
        self._user_defined_strategy = None
        self._meta_optimizer_candidates = []
        self._graph_optimizer_candidates = []

134 135 136
    def _get_applied_meta_optimizer(self):
        return self._meta_optimizers

137 138 139 140 141 142
    def _get_applied_meta_list(self):
        return [type(opt).__name__ for opt in self._meta_optimizers]

    def _get_applied_graph_list(self):
        return [type(opt).__name__ for opt in self._graph_optimizers]

D
Dong Daxiang 已提交
143 144
    def _get_valid_strategy(self, dist_strategy, can_not_apply_optimizer_list):
        import copy
145

M
mapingshuo 已提交
146
        valid_strategy = copy.deepcopy(dist_strategy)
D
Dong Daxiang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
        invalid_optimizers = []
        for candidate in self._meta_optimizer_candidates:
            is_valid = False
            for valid in self._meta_optimizers:
                if candidate.__class__.__name__ == valid.__class__.__name__:
                    is_valid = True
                    break
            if not is_valid:
                invalid_optimizers.append(candidate)
        for opt in invalid_optimizers:
            opt._disable_strategy(valid_strategy)
        for opt in can_not_apply_optimizer_list:
            opt._disable_strategy(valid_strategy)
        return valid_strategy
161

162 163 164
    """
    Meta Optimizer Type A: rewrite forward, backward. e.g. recompute, async, sync, pipeline.
                           results will be splitted in async, sync, pipeline
165
    Meta Optimizer Type B: rewrite forward,
166 167 168 169 170 171 172 173
                           e.g. AMP and the corresponding backward is generated by rewritten forward
    Meta Opitmizer Type B: rewrite backward. e.g. gradient fusion
    Meta Optimizer Type D: rewrite optimize. e.g. lars, lamb, localsgd, gradient merge, dgc
    Meta Optimizer Type E: only transpile to Graph structure for runtime,
                           currently, grad fusion and kernel fusion, sync batch-norm included.
                           we will remove grad fusion and sync batch-norm
    """

174 175 176 177 178 179 180 181 182
    def generate_optimizer(
        self,
        loss,
        role_maker,
        optimizer,
        user_defined_strategy,
        meta_optimizer_list,
        graph_optimizer_list,
    ):
D
Dong Daxiang 已提交
183 184 185 186
        self._user_defined_strategy = user_defined_strategy
        self._meta_optimizer_candidates = meta_optimizer_list
        self._graph_optimizer_candidates = graph_optimizer_list

187 188 189 190 191
        if len(meta_optimizer_list) == 0 and len(graph_optimizer_list) == 0:
            return optimizer, None
        else:
            # currently, we use heuristic algorithm to select
            # meta optimizers combinations
D
Dong Daxiang 已提交
192 193
            meta_optimizers = maximum_path_len_algo(meta_optimizer_list)
            graph_optimizers = maximum_path_len_algo(graph_optimizer_list)
194 195 196 197
            # should design a distributed strategy update interface
            # when we have finally decided the combination of meta_optimizer
            # and graph_optimizer, the corresponding distributed strategy
            # should be updated.
D
Dong Daxiang 已提交
198

199 200 201 202 203 204
            self._meta_optimizers = (
                [] if meta_optimizers is None else meta_optimizers
            )
            self._graph_optimizers = (
                [] if graph_optimizers is None else graph_optimizers
            )
D
Dong Daxiang 已提交
205

206 207 208 209 210 211
            return_meta = (
                None if meta_optimizers == None else meta_optimizers[0]
            )
            return_graph = (
                None if graph_optimizers == None else graph_optimizers[0]
            )
212 213 214 215

            if meta_optimizers == None or graph_optimizers == None:
                return return_meta, return_graph

216
            # do heuristic filter here, if any meta optimizer in graph optimizers is in
217 218 219 220
            # any meta optimizers' black list, set return_graph to None
            need_graph_opt = True
            for graph_opt in graph_optimizers:
                for program_opt in meta_optimizers:
221 222 223 224
                    if (
                        graph_opt.__class__.__name__
                        in program_opt.meta_optimizers_black_list
                    ):
225 226 227 228
                        need_graph_opt = False
            if not need_graph_opt:
                return_graph = None

D
Dong Daxiang 已提交
229
            return return_meta, return_graph