dist_transpose.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18
from .common import register_distributed_operator_impl
C
caozhou 已提交
19
from .common import is_parameter_related
20
from ..utils import compute_compatible_and_update_dim_mapping
21
from .dist_default import DistributedDefaultImpl0
22
from ..cost import Transpose2OpCost, Transpose2GradOpCost
23
from ..cost import build_comp_desc_from_dist_op, build_dp_costs
C
caozhou 已提交
24 25
from ..cost import build_comp_costs_from_descs
from paddle.distributed.fleet.meta_optimizers.common import OpRole
26 27


28
class DistributedTranspose2(DistributedOperatorImplContainer):
29 30
    def __init__(self, op_type):
        super(DistributedTranspose2, self).__init__(op_type)
31 32


33
register_distributed_operator_impl_container(
34 35
    DistributedTranspose2("transpose2")
)
36 37 38 39


class DistributedTranspose2Impl(DistributedOperatorImpl):
    def __init__(self, name):
40
        super(DistributedTranspose2Impl, self).__init__(name)
41
        self._forward_implemented = False
42
        self._backward_implemented = False
43

44
    def is_input_compatible(self, dist_op):
45 46
        return True

47
    def is_output_compatible(self, dist_op):
48 49
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
50
    def is_auto_compatible(self, dist_op):
51 52 53
        if (not self.is_input_compatible(dist_op)) or (
            not self.is_output_compatible(dist_op)
        ):
54 55
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
56 57 58 59 60 61 62
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        perm = op_desc.attr('axis')
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
63 64
            x_shape_name
        )
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        new_dims_mapping = [-1 for i in range(len(x_dims_mapping))]
        for i in range(len(x_dims_mapping)):
            new_dims_mapping[i] = x_dims_mapping[perm[i]]

        if len(x_dims_mapping) != len(out_dims_mapping):
            return False

        if new_dims_mapping != out_dims_mapping:
            return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

85
    def update_dims_mapping(self, dist_op):
86
        changed = False
87 88
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
89 90 91 92 93 94
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
95 96
            x_shape_name
        )
97 98 99 100 101 102 103 104 105 106
        perm = op_desc.attr('axis')

        assert len(x_dims_mapping) == len(perm)

        new_dims_mapping = [-1 for i in range(len(x_dims_mapping))]
        for i in range(len(x_dims_mapping)):
            new_dims_mapping[i] = x_dims_mapping[perm[i]]

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
107 108
                [new_dims_mapping, out_dims_mapping], [i, i]
            )
109 110 111 112 113 114 115 116 117 118 119 120 121
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            if x_dims_mapping[perm[i]] != new_dims_mapping[i]:
                x_dims_mapping[perm[i]] = new_dims_mapping[i]
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

C
caozhou 已提交
122 123 124 125 126 127 128 129 130 131 132
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
133 134 135
        desc_mapping = build_comp_desc_from_dist_op(
            dist_op=dist_op, dist_context=ctx
        )
C
caozhou 已提交
136 137
        processes = dist_op.dist_attr.process_mesh.processes
        op_type = dist_op.serial_op.type
138 139 140
        cost_mapping = build_comp_costs_from_descs(
            Transpose2OpCost, ctx, processes, desc_mapping, cluster
        )
C
caozhou 已提交
141 142 143 144 145 146 147

        res_cost = [cost_mapping]
        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
148 149 150
        desc_mapping = build_comp_desc_from_dist_op(
            dist_op=dist_op, dist_context=ctx
        )
C
caozhou 已提交
151 152 153 154
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        op_type = dist_op.serial_op.type
155 156 157
        cost_mapping = build_comp_costs_from_descs(
            Transpose2GradOpCost, ctx, processes, desc_mapping, cluster
        )
C
caozhou 已提交
158 159 160 161 162 163 164 165 166
        res.append(cost_mapping)

        backward_op = dist_op.serial_op
        main_block = backward_op.block
        need_gradient_allreduce = False
        vars = main_block.vars
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and is_parameter_related(
167 168
                    varname, main_block
                ):
C
caozhou 已提交
169 170 171 172 173 174 175 176 177
                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
178 179 180 181 182 183 184 185 186
                        build_dp_costs(
                            res,
                            dist_op,
                            ctx,
                            var_names,
                            attrs,
                            parallel_axis,
                            cluster,
                        )
C
caozhou 已提交
187 188
        return res

189 190 191 192
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

193 194
    @staticmethod
    def backward(ctx, *args, **kwargs):
195
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
196

197 198

register_distributed_operator_impl(
199 200
    "transpose2", DistributedTranspose2Impl("same_mapping_transpose")
)