transformer_model.py 15.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers

pos_enc_param_names = (
    "src_pos_enc_table",
23 24
    "trg_pos_enc_table",
)
Y
Yu Yang 已提交
25

W
Wu Yi 已提交
26
batch_size = 2
Y
Yu Yang 已提交
27 28 29 30 31 32


def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
33 34 35 36 37 38 39 40 41 42 43
    position_enc = np.array(
        [
            [
                pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
                for j in range(d_pos_vec)
            ]
            if pos != 0
            else np.zeros(d_pos_vec)
            for pos in range(n_position)
        ]
    )
Y
Yu Yang 已提交
44 45 46 47 48
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


49 50 51 52 53 54 55 56 57 58 59
def multi_head_attention(
    queries,
    keys,
    values,
    attn_bias,
    d_key,
    d_value,
    d_model,
    n_head=1,
    dropout_rate=0.0,
):
Y
Yu Yang 已提交
60 61 62 63 64 65 66
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
67 68
            "Inputs: queries, keys and values should all be 3-D tensors."
        )
Y
Yu Yang 已提交
69 70 71 72 73

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        q = layers.fc(
            input=queries,
            size=d_key * n_head,
            param_attr=fluid.initializer.Xavier(
                uniform=False, fan_in=d_model * d_key, fan_out=n_head * d_key
            ),
            bias_attr=False,
            num_flatten_dims=2,
        )
        k = layers.fc(
            input=keys,
            size=d_key * n_head,
            param_attr=fluid.initializer.Xavier(
                uniform=False, fan_in=d_model * d_key, fan_out=n_head * d_key
            ),
            bias_attr=False,
            num_flatten_dims=2,
        )
        v = layers.fc(
            input=values,
            size=d_value * n_head,
            param_attr=fluid.initializer.Xavier(
                uniform=False,
                fan_in=d_model * d_value,
                fan_out=n_head * d_value,
            ),
            bias_attr=False,
            num_flatten_dims=2,
        )
Y
Yu Yang 已提交
103 104 105 106
        return q, k, v

    def __split_heads(x, n_head):
        """
T
tianshuo78520a 已提交
107
        Reshape the last dimension of input tensor x so that it becomes two
Y
Yu Yang 已提交
108 109 110 111 112 113 114 115 116 117
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        if n_head == 1:
            return x

        hidden_size = x.shape[-1]
        # FIXME(guosheng): Decouple the program desc with batch_size.
        reshaped = layers.reshape(
118 119
            x=x, shape=[batch_size, -1, n_head, hidden_size // n_head]
        )
Y
Yu Yang 已提交
120

T
tianshuo78520a 已提交
121
        # permute the dimensions into:
Y
Yu Yang 已提交
122 123 124 125 126
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
T
tianshuo78520a 已提交
127
        Transpose and then reshape the last two dimensions of input tensor x
Y
Yu Yang 已提交
128 129
        so that it becomes one dimension, which is reverse to __split_heads.
        """
130 131
        if len(x.shape) == 3:
            return x
Y
Yu Yang 已提交
132 133 134 135 136 137 138
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # FIXME(guosheng): Decouple the program desc with batch_size.
        return layers.reshape(
            x=trans_x,
139
            shape=list(
140 141 142
                map(int, [batch_size, -1, trans_x.shape[2] * trans_x.shape[3]])
            ),
        )
Y
Yu Yang 已提交
143 144 145 146 147 148 149 150 151 152 153

    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
        """
        Scaled Dot-Product Attention
        """

        # FIXME(guosheng): Optimize the shape in reshape_op or softmax_op.

        # The current implementation of softmax_op only supports 2D tensor,
        # consequently it cannot be directly used here.
        # If to use the reshape_op, Besides, the shape of product inferred in
翟飞跃 已提交
154
        # compile-time is not the actual shape in run-time. It can't be used
Y
Yu Yang 已提交
155 156 157 158 159 160 161 162 163 164 165 166
        # to set the attribute of reshape_op.
        # So, here define the softmax for temporary solution.

        def __softmax(x, eps=1e-9):
            exp_out = layers.exp(x=x)
            sum_out = layers.reduce_sum(exp_out, dim=-1, keep_dim=False)
            return layers.elementwise_div(x=exp_out, y=sum_out, axis=0)

        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        weights = __softmax(layers.elementwise_add(x=product, y=attn_bias))
        if dropout_rate:
167 168 169
            weights = layers.dropout(
                weights, dropout_prob=dropout_rate, is_test=False
            )
Y
Yu Yang 已提交
170 171 172 173 174 175 176 177 178
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

179 180 181
    ctx_multiheads = scaled_dot_product_attention(
        q, k, v, attn_bias, d_model, dropout_rate
    )
Y
Yu Yang 已提交
182 183 184 185

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
186 187 188 189 190 191 192
    proj_out = layers.fc(
        input=out,
        size=d_model,
        param_attr=fluid.initializer.Xavier(uniform=False),
        bias_attr=False,
        num_flatten_dims=2,
    )
Y
Yu Yang 已提交
193 194 195 196 197 198 199 200 201
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    hidden = layers.fc(
        input=x,
        size=d_inner_hid,
        num_flatten_dims=2,
        param_attr=fluid.initializer.Uniform(
            low=-(d_hid**-0.5), high=(d_hid**-0.5)
        ),
        act="relu",
    )
    out = layers.fc(
        input=hidden,
        size=d_hid,
        num_flatten_dims=2,
        param_attr=fluid.initializer.Uniform(
            low=-(d_inner_hid**-0.5), high=(d_inner_hid**-0.5)
        ),
    )
Y
Yu Yang 已提交
219 220 221
    return out


222
def pre_post_process_layer(prev_out, out, process_cmd, dropout=0.0):
Y
Yu Yang 已提交
223 224 225 226 227 228 229 230 231 232 233
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.

    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
234 235 236 237 238 239
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.0),
                bias_attr=fluid.initializer.Constant(0.0),
            )
Y
Yu Yang 已提交
240 241 242 243 244 245 246 247 248 249
        elif cmd == "d":  # add dropout
            if dropout:
                out = layers.dropout(out, dropout_prob=dropout, is_test=False)
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


250 251 252 253 254 255 256 257 258 259 260
def prepare_encoder(
    src_word,
    src_pos,
    src_vocab_size,
    src_emb_dim,
    src_pad_idx,
    src_max_len,
    dropout=0.0,
    pos_pad_idx=0,
    pos_enc_param_name=None,
):
Y
Yu Yang 已提交
261 262 263 264 265 266
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].

    This module is used at the bottom of the encoder stacks.
    """
267 268 269 270 271 272
    src_word_emb = layers.embedding(
        src_word,
        size=[src_vocab_size, src_emb_dim],
        padding_idx=src_pad_idx,
        param_attr=fluid.initializer.Normal(0.0, 1.0),
    )
Y
Yu Yang 已提交
273 274 275 276
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        padding_idx=pos_pad_idx,
277 278
        param_attr=fluid.ParamAttr(name=pos_enc_param_name, trainable=False),
    )
C
chengduo 已提交
279
    src_pos_enc.stop_gradient = True
Y
Yu Yang 已提交
280 281 282 283
    enc_input = src_word_emb + src_pos_enc

    # FIXME(guosheng): Decouple the program desc with batch_size.
    enc_input = layers.reshape(x=enc_input, shape=[batch_size, -1, src_emb_dim])
284 285 286 287 288
    return (
        layers.dropout(enc_input, dropout_prob=dropout, is_test=False)
        if dropout
        else enc_input
    )
Y
Yu Yang 已提交
289 290


291 292 293 294 295 296
prepare_encoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[0]
)
prepare_decoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[1]
)
Y
Yu Yang 已提交
297 298


299 300 301 302 303 304 305 306 307 308
def encoder_layer(
    enc_input,
    attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
Y
Yu Yang 已提交
309 310 311 312 313 314 315
    """The encoder layers that can be stacked to form a deep encoder.

    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
316 317 318 319 320 321 322 323 324 325 326 327 328 329
    attn_output = multi_head_attention(
        enc_input,
        enc_input,
        enc_input,
        attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
    )
    attn_output = post_process_layer(
        enc_input, attn_output, "dan", dropout_rate
    )
Y
Yu Yang 已提交
330 331 332 333
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
def encoder(
    enc_input,
    attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(
            enc_input,
Y
Yu Yang 已提交
352 353 354 355 356 357
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
358 359
            dropout_rate,
        )
Y
Yu Yang 已提交
360 361 362 363
        enc_input = enc_output
    return enc_output


364 365 366 367 368 369 370 371 372 373 374 375 376
def decoder_layer(
    dec_input,
    enc_output,
    slf_attn_bias,
    dec_enc_attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
    """The layer to be stacked in decoder part.
Y
Yu Yang 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389

    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
390 391
        dropout_rate,
    )
Y
Yu Yang 已提交
392 393 394 395
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
396 397
        dropout_rate,
    )
Y
Yu Yang 已提交
398 399 400 401 402 403 404 405 406
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
407 408
        dropout_rate,
    )
Y
Yu Yang 已提交
409 410 411 412
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
413 414
        dropout_rate,
    )
Y
Yu Yang 已提交
415 416 417
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
418 419
        d_model,
    )
Y
Yu Yang 已提交
420 421 422 423
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
424 425
        dropout_rate,
    )
Y
Yu Yang 已提交
426 427 428
    return dec_output


429 430 431 432 433 434 435 436 437 438 439 440 441
def decoder(
    dec_input,
    enc_output,
    dec_slf_attn_bias,
    dec_enc_attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
Y
Yu Yang 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
456 457
            dropout_rate,
        )
Y
Yu Yang 已提交
458 459 460 461
        dec_input = dec_output
    return dec_output


462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
def build_inputs(max_length, n_head):
    names = [
        'src_word',
        'src_pos',
        'trg_word',
        'trg_pos',
        'src_slf_attn_bias',
        'trg_slf_attn_bias',
        'trg_src_attn_bias',
        'gold',
        'weights',
    ]

    shapes = [
        [batch_size * max_length, 1],
        [batch_size * max_length, 1],
        [batch_size * max_length, 1],
        [batch_size * max_length, 1],
        [batch_size, n_head, max_length, max_length],
        [batch_size, n_head, max_length, max_length],
        [batch_size, n_head, max_length, max_length],
        [batch_size * max_length, 1],
        [batch_size * max_length, 1],
    ]

    dtypes = [
        'int64',
        'int64',
        'int64',
        'int64',
        'float32',
        'float32',
        'float32',
        'int64',
        'float32',
    ]

    all_inputs = []
    for name, shape, dtype in zip(names, shapes, dtypes):
        all_inputs.append(
502 503 504 505
            fluid.layers.data(
                name=name, shape=shape, dtype=dtype, append_batch_size=False
            )
        )
506 507 508
    return all_inputs


Y
Yu Yang 已提交
509
def transformer(
510 511 512 513 514 515 516 517 518 519 520 521 522 523
    src_vocab_size,
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    src_pad_idx,
    trg_pad_idx,
    pos_pad_idx,
):
524

525 526 527 528 529 530 531 532 533 534 535
    (
        src_word,
        src_pos,
        trg_word,
        trg_pos,
        src_slf_attn_bias,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        gold,
        weights,
    ) = build_inputs(max_length, n_head)
Y
Yu Yang 已提交
536 537 538 539 540 541 542 543

    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        src_pad_idx,
        max_length,
544 545
        dropout_rate,
    )
Y
Yu Yang 已提交
546 547 548 549 550 551 552 553 554
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
555 556
        dropout_rate,
    )
Y
Yu Yang 已提交
557 558 559 560 561 562 563 564

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        trg_pad_idx,
        max_length,
565 566
        dropout_rate,
    )
Y
Yu Yang 已提交
567 568 569 570 571 572 573 574 575 576 577
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
578 579
        dropout_rate,
    )
Y
Yu Yang 已提交
580 581 582

    # TODO(guosheng): Share the weight matrix between the embedding layers and
    # the pre-softmax linear transformation.
583 584 585 586 587 588 589 590 591 592 593
    predict = layers.reshape(
        x=layers.fc(
            input=dec_output,
            size=trg_vocab_size,
            param_attr=fluid.initializer.Xavier(uniform=False),
            bias_attr=False,
            num_flatten_dims=2,
        ),
        shape=[-1, trg_vocab_size],
        act="softmax",
    )
Y
Yu Yang 已提交
594 595 596 597

    cost = layers.cross_entropy(input=predict, label=gold)
    weighted_cost = cost * weights
    return layers.reduce_sum(weighted_cost)