test_weight_decay.py 6.3 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib

import unittest
from functools import partial
import numpy as np
import paddle
import paddle.fluid.core as core

import paddle.fluid as fluid
24
from paddle.fluid import compiler
C
chengduo 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def get_places():
    places = []
    if core.is_compiled_with_cuda():
        places.append(core.CUDAPlace(0))
    return places


@contextlib.contextmanager
def prog_scope_guard(main_prog, startup_prog):
    scope = fluid.core.Scope()
    with fluid.unique_name.guard():
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_prog, startup_prog):
                yield


43 44 45 46 47 48 49 50 51 52
def bow_net(
    data,
    label,
    dict_dim,
    is_sparse=False,
    emb_dim=128,
    hid_dim=128,
    hid_dim2=96,
    class_dim=2,
):
C
chengduo 已提交
53 54 55 56 57
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
58 59 60
    emb = fluid.layers.embedding(
        input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim]
    )
C
chengduo 已提交
61 62 63 64 65 66
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
67
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
68 69 70 71 72 73 74

    return avg_cost


class TestWeightDecay(unittest.TestCase):
    def setUp(self):
        self.word_dict = paddle.dataset.imdb.word_dict()
75 76 77
        reader = paddle.batch(
            paddle.dataset.imdb.train(self.word_dict), batch_size=4
        )()
C
chengduo 已提交
78
        self.train_data = [next(reader) for _ in range(5)]
79
        self.learning_rate = 0.5
C
chengduo 已提交
80 81 82 83 84 85 86 87

    def run_executor(self, place, feed_list, loss):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())
        main_prog = fluid.default_main_program()
        loss_set = []
        for data in self.train_data:
88 89 90
            out = exe.run(
                main_prog, feed=feeder.feed(data), fetch_list=[loss.name]
            )
C
chengduo 已提交
91 92 93 94 95 96

            print("loss              %s" % (np.average(out)))
            loss_set.append(np.average(out))

        return loss_set

97 98 99 100 101 102 103 104 105
    def run_parallel_exe(
        self,
        place,
        feed_list,
        loss,
        use_reduce=False,
        use_fast_executor=False,
        use_ir_memory_optimize=False,
    ):
C
chengduo 已提交
106 107 108 109 110 111 112 113 114
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        exec_strategy = fluid.ExecutionStrategy()
        if use_fast_executor:
            exec_strategy.use_experimental_executor = True

        build_strategy = fluid.BuildStrategy()
115 116 117 118 119
        build_strategy.reduce_strategy = (
            fluid.BuildStrategy.ReduceStrategy.Reduce
            if use_reduce
            else fluid.BuildStrategy.ReduceStrategy.AllReduce
        )
C
chengduo 已提交
120 121
        build_strategy.memory_optimize = use_ir_memory_optimize

122
        train_cp = compiler.CompiledProgram(
123 124 125 126 127 128
            fluid.default_main_program()
        ).with_data_parallel(
            loss_name=loss.name,
            exec_strategy=exec_strategy,
            build_strategy=build_strategy,
        )
C
chengduo 已提交
129 130 131

        loss_set = []
        for data in self.train_data:
132 133 134
            out = exe.run(
                train_cp, feed=feeder.feed(data), fetch_list=[loss.name]
            )
C
chengduo 已提交
135 136 137 138
            loss_set.append(np.average(out))

        return loss_set

139 140 141
    def check_weight_decay(
        self, place, model, use_parallel_exe=False, use_reduce=False
    ):
C
chengduo 已提交
142 143 144 145
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
        startup_prog.random_seed = 1
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
146 147 148
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1
            )
C
chengduo 已提交
149 150 151
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            avg_cost = model(data, label, len(self.word_dict))

152 153 154 155
            param_list = [
                (var, var * self.learning_rate)
                for var in main_prog.block(0).all_parameters()
            ]
C
chengduo 已提交
156 157

            optimizer = fluid.optimizer.Adagrad(
158 159
                learning_rate=self.learning_rate
            )
C
chengduo 已提交
160 161 162
            optimizer.minimize(avg_cost)

            for params in param_list:
163 164 165
                updated_p = fluid.layers.elementwise_sub(
                    x=params[0], y=params[1]
                )
C
chengduo 已提交
166 167 168
                fluid.layers.assign(input=updated_p, output=params[0])

            if use_parallel_exe:
169 170 171
                loss = self.run_parallel_exe(
                    place, [data, label], loss=avg_cost, use_reduce=use_reduce
                )
C
chengduo 已提交
172 173 174 175 176 177 178 179 180 181
            else:
                loss = self.run_executor(place, [data, label], loss=avg_cost)

        return loss

    def test_weight_decay(self):
        model = partial(bow_net, is_sparse=False)
        for place in get_places():
            loss = self.check_weight_decay(place, model, use_parallel_exe=False)

C
chengduo 已提交
182
            # TODO(zcd): should test use_reduce=True
183 184 185
            loss2 = self.check_weight_decay(
                place, model, use_parallel_exe=True, use_reduce=False
            )
C
chengduo 已提交
186 187

            for i in range(len(loss)):
C
chengduo 已提交
188
                self.assertTrue(
189
                    np.isclose(a=loss[i], b=loss2[i], rtol=5e-5),
190 191 192 193 194 195 196 197
                    "Expect "
                    + str(loss[i])
                    + "\n"
                    + "But Got"
                    + str(loss2[i])
                    + " in class "
                    + self.__class__.__name__,
                )
C
chengduo 已提交
198 199 200 201


if __name__ == '__main__':
    unittest.main()