test_imperative_triple_grad.py 11.4 KB
Newer Older
W
Weilong Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle
from paddle.fluid.wrapped_decorator import wrap_decorator
import unittest
from unittest import TestCase
import numpy as np
21
from paddle.fluid.framework import _test_eager_guard
W
Weilong Wu 已提交
22 23 24 25


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
26
        if fluid._non_static_mode():
W
Weilong Wu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    np.random.seed(2021)
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


44 45 46 47
class TestDygraphTripleGradMatmul(TestCase):
    def test_matmul_triple_grad(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
48 49 50 51 52 53
            x = paddle.to_tensor(
                input_numpy, stop_gradient=False, dtype='float32'
            )
            y = paddle.to_tensor(
                input_numpy, stop_gradient=False, dtype='float32'
            )
54 55
            out = paddle.matmul(x, y, False, False)

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
            new_out_g = paddle.to_tensor(
                np.ones([3, 3]), stop_gradient=False, dtype='float32'
            )
            new_x_g, new_y_g = paddle.grad(
                [out], [x, y], [new_out_g], retain_graph=True, create_graph=True
            )

            new_x_g_g = paddle.to_tensor(
                np.ones([3, 3]), stop_gradient=False, dtype='float32'
            )
            new_y_g_g = paddle.to_tensor(
                np.ones([3, 3]), stop_gradient=False, dtype='float32'
            )
            new_a, new_b, new_c = paddle.grad(
                [new_x_g, new_y_g],
                [x, y, new_out_g],
                [new_x_g_g, new_y_g_g],
                retain_graph=True,
                create_graph=True,
            )
76 77 78 79

            new_a.backward()

            out_ref = np.ones([3, 3]) * 12.0
80
            np.testing.assert_array_equal(out.numpy(), out_ref)
81 82 83

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
84 85
            np.testing.assert_array_equal(new_x_g.numpy(), new_x_g_ref)
            np.testing.assert_array_equal(new_y_g.numpy(), new_y_g_ref)
86 87 88 89 90

            new_a_ref = np.ones([3, 3]) * 3.0
            new_b_ref = np.ones([3, 3]) * 3.0
            new_c_ref = np.ones([3, 3]) * 12.0

91 92 93
            np.testing.assert_array_equal(new_a.numpy(), new_a_ref)
            np.testing.assert_array_equal(new_b.numpy(), new_b_ref)
            np.testing.assert_array_equal(new_c.numpy(), new_c_ref)
94 95

            x_grad_ref = np.ones([3, 3]) * 0.0
96
            np.testing.assert_array_equal(x.grad.numpy(), x_grad_ref)
97 98

            y_grad_ref = np.ones([3, 3]) * 0.0
99
            np.testing.assert_array_equal(y.grad.numpy(), y_grad_ref)
100 101

            new_out_g_ref = np.ones([3, 3]) * 3.0
102
            np.testing.assert_array_equal(new_out_g.grad.numpy(), new_out_g_ref)
103 104 105

            new_x_g_g_ref = np.ones([3, 3]) * 0.0
            new_y_g_g_ref = np.ones([3, 3]) * 3.0
106 107
            np.testing.assert_array_equal(new_x_g_g.grad.numpy(), new_x_g_g_ref)
            np.testing.assert_array_equal(new_y_g_g.grad.numpy(), new_y_g_g_ref)
108 109


W
Weilong Wu 已提交
110 111 112 113 114
class TestDygraphTripleGrad(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 5]

115 116 117 118 119 120 121 122 123 124
    def grad(
        self,
        outputs,
        inputs,
        grad_outputs=None,
        no_grad_vars=None,
        retain_graph=None,
        create_graph=False,
        allow_unused=False,
    ):
W
Weilong Wu 已提交
125
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
126 127 128 129 130 131 132 133 134
        return fluid.dygraph.grad(
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
            create_graph=create_graph,
            allow_unused=allow_unused,
        )
W
Weilong Wu 已提交
135 136

    @dygraph_guard
137
    def func_exception(self):
W
Weilong Wu 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
156 157 158 159 160
            self.grad(
                [random_var(shape), random_var(shape)],
                [random_var(shape)],
                [random_var(shape)],
            )
W
Weilong Wu 已提交
161 162

        with self.assertRaises(AssertionError):
163 164 165
            self.grad(
                [random_var(shape)], [random_var(shape)], no_grad_vars=[1]
            )
W
Weilong Wu 已提交
166 167 168 169 170

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)

    @dygraph_guard
171
    def func_example_with_gradient_and_create_graph(self):
W
Weilong Wu 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        x = random_var(self.shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

188
        (dx_actual,) = self.grad([out], [x], create_graph=True)
W
Weilong Wu 已提交
189 190
        # Theoritical result based on math calculation
        dout = np.ones(self.shape).astype('float32')
191 192 193
        dx_expected = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(y_np)
        )
194
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
W
Weilong Wu 已提交
195

196
        (ddx_actual,) = self.grad([dx_actual], [x], create_graph=True)
W
Weilong Wu 已提交
197 198 199
        # Theoritical result based on math calculation
        DDY = np.zeros(self.shape).astype('float32')
        DDX = np.ones(self.shape).astype('float32')
200 201 202
        double_grad_tmp1 = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(DDY)
        )
W
Weilong Wu 已提交
203 204
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
205 206 207 208 209
            (1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        )
        ddx_expected = double_grad_tmp1 + np.matmul(
            double_grad_tmp3, np.transpose(y_np)
        )
210
        np.testing.assert_allclose(ddx_actual.numpy(), ddx_expected, rtol=1e-05)
W
Weilong Wu 已提交
211 212 213 214 215

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
216 217 218 219 220 221 222
        tmp2 = (
            tmp0 * (1 - 2 * out_np) * d_ddout
            - 2 * dout * (1 - out_np) * out_np * tmp0 * tmp0
        )
        dddx_expected = np.matmul(
            ((tmp1 + tmp2) * out_np * (1 - out_np)), np.transpose(y_np)
        )
W
Weilong Wu 已提交
223 224 225

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
226
        np.testing.assert_allclose(dddx_grad_actual, dddx_expected, rtol=1e-05)
W
Weilong Wu 已提交
227

228
    def test_all_cases(self):
229
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
230 231 232
        self.func_exception()
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
233 234
            self.func_exception()
            self.func_example_with_gradient_and_create_graph()
235
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
236

W
Weilong Wu 已提交
237

238 239 240 241 242 243 244
class TestDygraphTripleGradBradcastCase(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.x_shape = [3, 2, 2]
        self.y_shape = [1, 2, 2]
        self.z_shape = [2, 2]

245 246 247 248 249 250 251 252 253 254
    def grad(
        self,
        outputs,
        inputs,
        grad_outputs=None,
        no_grad_vars=None,
        retain_graph=None,
        create_graph=False,
        allow_unused=False,
    ):
255
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
256 257 258 259 260 261 262 263 264
        return fluid.dygraph.grad(
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
            create_graph=create_graph,
            allow_unused=allow_unused,
        )
265 266

    @dygraph_guard
267
    def func_example_with_gradient_and_create_graph(self):
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        x = random_var(self.x_shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.y_shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.z_shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

284
        (dx_actual,) = self.grad([out], [x], create_graph=True)
285 286
        # Theoritical result based on math calculation
        dout = np.ones(self.x_shape).astype('float32')
287 288 289
        dx_expected = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(y_np, axes=(0, 2, 1))
        )
290
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
291

292
        (ddx_actual,) = self.grad([dx_actual], [x], create_graph=True)
293 294 295
        # Theoritical result based on math calculation
        DDY = np.zeros(self.y_shape).astype('float32')
        DDX = np.ones(self.x_shape).astype('float32')
296 297 298
        double_grad_tmp1 = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(DDY, axes=(0, 2, 1))
        )
299 300
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
301 302
            (1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        )
303
        ddx_expected = double_grad_tmp1 + np.matmul(
304 305
            double_grad_tmp3, np.transpose(y_np, axes=(0, 2, 1))
        )
306
        np.testing.assert_allclose(ddx_actual.numpy(), ddx_expected, rtol=1e-05)
307 308 309 310 311

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.x_shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
312 313 314 315 316 317 318 319
        tmp2 = (
            tmp0 * (1 - 2 * out_np) * d_ddout
            - 2 * dout * (1 - out_np) * out_np * tmp0 * tmp0
        )
        dddx_expected = np.matmul(
            ((tmp1 + tmp2) * out_np * (1 - out_np)),
            np.transpose(y_np, axes=(0, 2, 1)),
        )
320 321 322

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
323
        np.testing.assert_allclose(dddx_grad_actual, dddx_expected, rtol=1e-05)
324

325
    def test_all_cases(self):
326
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
327 328
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
329
            self.func_example_with_gradient_and_create_graph()
330
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
331

332

W
Weilong Wu 已提交
333 334
if __name__ == '__main__':
    unittest.main()