container.py 5.9 KB
Newer Older
Y
Youwei Song 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
songyouwei 已提交
15
from ..framework import Parameter
Y
Youwei Song 已提交
16 17
from .layers import Layer

S
songyouwei 已提交
18 19 20 21
__all__ = [
    'Sequential',
    'ParameterList',
]
Y
Youwei Song 已提交
22 23 24 25 26 27 28 29


class Sequential(Layer):
    """Sequential container.
    Sub layers will be added to this container in the order of argument in the constructor.
    The argument passed to the constructor can be iterable Layers or iterable name Layer pairs.

    Parameters:
S
songyouwei 已提交
30
        *layers(tuple): Layers or iterable name Layer pairs.
Y
Youwei Song 已提交
31 32 33 34 35 36 37 38 39 40 41

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            data = np.random.uniform(-1, 1, [30, 10]).astype('float32')
            with fluid.dygraph.guard():
                data = fluid.dygraph.to_variable(data)
                # create Sequential with iterable Layers
S
songyouwei 已提交
42 43
                model1 = fluid.dygraph.Sequential(
                    fluid.Linear(10, 1), fluid.Linear(1, 2)
Y
Youwei Song 已提交
44
                )
S
songyouwei 已提交
45
                model1[0]  # access the first layer
Y
Youwei Song 已提交
46 47 48
                res1 = model1(data)  # sequential execution

                # create Sequential with name Layer pairs
S
songyouwei 已提交
49 50 51
                model2 = fluid.dygraph.Sequential(
                    ('l1', fluid.Linear(10, 2)),
                    ('l2', fluid.Linear(2, 3))
Y
Youwei Song 已提交
52 53
                )
                model2['l1']  # access l1 layer
S
songyouwei 已提交
54
                model2.add_sublayer('l3', fluid.Linear(3, 3))  # add sublayer
Y
Youwei Song 已提交
55 56 57 58
                res2 = model2(data)  # sequential execution

    """

S
songyouwei 已提交
59 60
    def __init__(self, *layers):
        super(Sequential, self).__init__()
Y
Youwei Song 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        if len(layers) > 0 and isinstance(layers[0], tuple):
            for name, layer in layers:
                self.add_sublayer(name, layer)
        else:
            for idx, layer in enumerate(layers):
                self.add_sublayer(str(idx), layer)

    def __getitem__(self, name):
        return self._sub_layers[str(name)]

    def __setitem__(self, name, layer):
        assert isinstance(layer, Layer)
        setattr(self, str(name), layer)

    def __delitem__(self, name):
        name = str(name)
        assert name in self._sub_layers
        del self._sub_layers[name]

    def __len__(self):
        return len(self._sub_layers)

    def forward(self, input):
        for layer in self._sub_layers.values():
            input = layer(input)
        return input
S
songyouwei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171


class ParameterList(Layer):
    """ParameterList Container.

    This container acts like a Python list, but parameters it contains will be properly added.

    Parameters:
        parameters (iterable, optional): Iterable Parameters to be added

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            class MyLayer(fluid.Layer):
                def __init__(self, num_stacked_param):
                    super(MyLayer, self).__init__()
                    # create ParameterList with iterable Parameters
                    self.params = fluid.dygraph.ParameterList(
                        [fluid.layers.create_parameter(
                            shape=[2, 2], dtype='float32')] * num_stacked_param)

                def forward(self, x):
                    for i, p in enumerate(self.params):
                        tmp = self._helper.create_variable_for_type_inference('float32')
                        self._helper.append_op(
                            type="mul",
                            inputs={"X": x,
                                    "Y": p},
                            outputs={"Out": tmp},
                            attrs={"x_num_col_dims": 1,
                                   "y_num_col_dims": 1})
                        x = tmp
                    return x

            data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data_np)
                num_stacked_param = 4
                model = MyLayer(num_stacked_param)
                print(len(model.params))  # 4
                res = model(x)
                print(res.shape)  # [5, 2]

                replaced_param = fluid.layers.create_parameter(shape=[2, 3], dtype='float32')
                model.params[num_stacked_param - 1] = replaced_param  # replace last param
                res = model(x)
                print(res.shape)  # [5, 3]
                model.params.append(fluid.layers.create_parameter(shape=[3, 4], dtype='float32'))  # append param
                print(len(model.params))  # 5
                res = model(x)
                print(res.shape)  # [5, 4]
    """

    def __init__(self, parameters=None):
        super(ParameterList, self).__init__()
        if parameters is not None:
            for idx, param in enumerate(parameters):
                assert isinstance(param, Parameter)
                self.add_parameter(str(idx), param)

    def __getitem__(self, idx):
        return self._parameters[str(idx)]

    def __setitem__(self, idx, param):
        assert isinstance(param, Parameter)
        setattr(self, str(idx), param)

    def __len__(self):
        return len(self._parameters)

    def __iter__(self):
        return iter(self._parameters.values())

    def append(self, parameter):
        """Appends a given parameter at the end of the list.

        Parameters:
            parameter (Parameter): parameter to append
        """
        idx = len(self._parameters)
        self.add_parameter(str(idx), parameter)
        return self