conv_compute.cc 8.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

24
void ConvCompute::PrepareForRun() {
T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  auto& ctx = this->ctx_->template As<ARMContext>();

  int win = x_dims[3];  // nchw
  int hin = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int ow = o_dims[3];
  int oh = o_dims[2];
  int oc = o_dims[1];
  int kh = w_dims[2];  // oihw
  int kw = w_dims[3];
  int pad = param.paddings[0];
  int stride = param.strides[0];

  const auto* i_data = param.x->data<float>();
  const auto* w_data = param.filter->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  bool kps_equal = (param.paddings[0] == param.paddings[1]) &&
                   (param.strides[0] == param.strides[1]) && (kw == kh);
  bool no_dilation = (param.dilations[0] == 1) && (param.dilations[1] == 1);
  bool flag_dw_3x3 =
      (kw == 3 && (pad == 0 || pad == 1) && (stride == 1 || stride == 2));
  bool flag_dw_5x5 =
      (kw == 5 && stride == 1) || (kw == 5 && stride == 2 && pad == 2);
  bool flag_dw = flag_dw_3x3 || flag_dw_5x5;

  // select conv impl
  if (param.groups == ic && ic == oc && kps_equal && no_dilation && flag_dw) {
    // dw conv impl
T
tensor-tang 已提交
61
    impl_ = new lite::arm::math::DepthwiseConv<PRECISION(kFloat)>;
62
    VLOG(3) << "invoking dw conv";
T
tensor-tang 已提交
63 64 65 66
  } else if (param.groups == 1 && kw == 3 && stride == 1 && kps_equal &&
             no_dilation) {
    if (ic >= 32 && oc >= 32 && oh > 16 && ow > 16) {
      // winograd conv impl
67
      impl_ = new lite::arm::math::WinogradConv<PRECISION(kFloat)>;
68
      VLOG(3) << "invoking winograd conv";
T
tensor-tang 已提交
69 70 71
    } else {
      // direct conv impl
      impl_ = new lite::arm::math::DirectConv<PRECISION(kFloat)>;
72
      VLOG(3) << "invoking direct conv";
T
tensor-tang 已提交
73 74 75 76
    }
  } else if (param.groups == 1 && kw == 3 && stride == 2 && kps_equal &&
             no_dilation) {
    // direct conv impl
N
nhzlx 已提交
77
    impl_ = new lite::arm::math::GemmLikeConv<PRECISION(kFloat)>;
78
    VLOG(3) << "invoking direct conv";
T
tensor-tang 已提交
79
  } else {
T
tensor-tang 已提交
80
    impl_ = new lite::arm::math::GemmLikeConv<PRECISION(kFloat)>;
81
    VLOG(3) << "invoking gemm like conv";
T
tensor-tang 已提交
82
  }
83 84
  CHECK(this->impl_->create(param, &ctx));
}
T
tensor-tang 已提交
85

86 87
void ConvCompute::Run() {
  auto& param = this->Param<param_t>();
T
tensor-tang 已提交
88 89 90 91 92 93 94
  CHECK(impl_);
  impl_->run(param);
  // if (this->act_ != nullptr) {
  //   this->act_->run(outputs, outputs, param.activation_param);
  // }
}

S
shixiaowei02 已提交
95 96 97
template <PrecisionType Ptype_out>
void ConvComputeInt8<Ptype_out>::PrepareForRun() {
  auto& param = this->Param<param_t>();
T
tensor-tang 已提交
98 99 100 101
  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

S
shixiaowei02 已提交
102
  auto& ctx = this->ctx_->template As<ARMContext>();
T
tensor-tang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  int win = x_dims[3];  // nchw
  int hin = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int ow = o_dims[3];
  int oh = o_dims[2];
  int oc = o_dims[1];
  int kh = w_dims[2];  // oihw
  int kw = w_dims[3];
  int ph = param.paddings[1];
  int pw = param.paddings[0];
  int sh = param.strides[1];
  int sw = param.strides[0];

  bool kps_equal = (pw == ph) && (sh == sw) && (kw == kh);
  bool no_dilation = (param.dilations[0] == 1) && (param.dilations[1] == 1);
  bool flag_dw_3x3 = (kw == 3) && (ph == 1) && (sw == 1 || sw == 2);
  bool flag_dw_5x5 = (kw == 5 && sw == 1 && ph == 2);
  bool flag_dw = flag_dw_3x3 || flag_dw_5x5;

  // weigth is int8 and bias is int32 so do not need trans
  if (param.groups == ic && ic == oc && kps_equal && no_dilation && flag_dw) {
N
nhzlx 已提交
126
    impl_ = new lite::arm::math::DepthwiseConvInt8<Ptype_out>;
X
xingzhaolong 已提交
127
    VLOG(3) << "Run DepthwiseConv Int8";
T
tensor-tang 已提交
128 129
  } else if (param.groups == 1 && kw == 3 && (sw == 1 || sw == 2) &&
             kps_equal && no_dilation) {
X
xingzhaolong 已提交
130 131 132
    VLOG(3) << "Run DirectConv Int8";
    impl_ = new lite::arm::math::GemmLikeConvInt8<Ptype_out>;
    // impl_ = new lite::arm::math::DirectConvInt8<Ptype_out>;
T
tensor-tang 已提交
133
  } else {
X
xingzhaolong 已提交
134
    VLOG(3) << "Run GemmLikeConvInt8";
T
tensor-tang 已提交
135 136 137
    impl_ = new lite::arm::math::GemmLikeConvInt8<Ptype_out>;
  }

S
shixiaowei02 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
  CHECK(this->impl_->create(param, &ctx));
}

template <PrecisionType Ptype_out>
void ConvComputeInt8<Ptype_out>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(impl_);
  impl_->run(param);
}

template class ConvComputeInt8<PRECISION(kInt8)>;
template class ConvComputeInt8<PRECISION(kFloat)>;
template class ConvComputeInt8<PRECISION(kInt32)>;
N
nhzlx 已提交
151

T
tensor-tang 已提交
152 153 154 155 156
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
157 158 159
REGISTER_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW,
                     paddle::lite::kernels::arm::ConvCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
N
nhzlx 已提交
160
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
161
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
Z
zhupengyang 已提交
162
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
163 164 165
    .Finalize();

REGISTER_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW,
T
tensor-tang 已提交
166 167
                     paddle::lite::kernels::arm::ConvCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
N
nhzlx 已提交
168
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
169
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
Z
zhupengyang 已提交
170
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
171
    .Finalize();
N
nhzlx 已提交
172

S
shixiaowei02 已提交
173 174 175
REGISTER_LITE_KERNEL(
    conv2d, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::ConvComputeInt8<PRECISION(kInt8)>, int8_out)
N
nhzlx 已提交
176 177 178 179 180 181 182 183
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .Finalize();

S
shixiaowei02 已提交
184 185 186
REGISTER_LITE_KERNEL(
    conv2d, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::ConvComputeInt8<PRECISION(kFloat)>, fp32_out)
N
nhzlx 已提交
187 188 189 190 191
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Output",
S
shixiaowei02 已提交
192
                {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))})
N
nhzlx 已提交
193
    .Finalize();
X
xingzhaolong 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

REGISTER_LITE_KERNEL(
    depthwise_conv2d, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::ConvComputeInt8<PRECISION(kInt8)>, int8_out)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .Finalize();

REGISTER_LITE_KERNEL(
    depthwise_conv2d, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::ConvComputeInt8<PRECISION(kFloat)>, fp32_out)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))})
    .Finalize();