test_dynrnn_static_input.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
import unittest
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid as fluid
from paddle.v2.fluid.backward import append_backward
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.framework import Program, switch_main_program
import bisect
import numpy as np

fluid.default_startup_program().random_seed = 0
np.random.seed(0)


class TestDyRnnStaticInput(unittest.TestCase):
    def setUp(self):
        self._delta = 0.005
        self._max_sequence_len = 3
        self._program = Program()
        switch_main_program(self._program)
        self.output_dim = 10
        self.place = core.CPUPlace()
        self.prepare_x_tensor()
        self.prepare_static_input_tensor()
        self.exe = fluid.Executor(self.place)

    def prepare_x_tensor(self):
        self.x_tensor_dim = 10
        lod = [[0, 2, 3, 6]]
        shape = [lod[0][-1], self.x_tensor_dim]
        self.x_tensor_data = np.random.random(shape).astype('float32')
        self.x_tensor = core.LoDTensor()
        self.x_tensor.set_lod(lod)
        self.x_tensor.set(self.x_tensor_data, self.place)

    def prepare_static_input_tensor(self):
        self.static_input_tensor_dim = 4
        lod = [[0, 1, 3, 6]]
        shape = [lod[0][-1], self.static_input_tensor_dim]
        self.static_input_data = np.random.random(shape).astype('float32')
        self.static_input_tensor = core.LoDTensor()
        self.static_input_tensor.set_lod(lod)
        self.static_input_tensor.set(self.static_input_data, self.place)

    def fetch_value(self, var):
        fetch_outs = self.exe.run(feed={
            'x_tensor': self.x_tensor,
            'static_input_tensor': self.static_input_tensor
        },
                                  fetch_list=[var],
                                  return_numpy=False)
        return self._lodtensor_to_ndarray(fetch_outs[0])

    def _lodtensor_to_ndarray(self, lod_tensor):
        dims = lod_tensor.get_dims()
        ndarray = np.zeros(shape=dims).astype('float32')
        for i in xrange(np.product(dims)):
            ndarray.ravel()[i] = lod_tensor.get_float_element(i)
        return ndarray

    def build_graph(self, only_forward=False):
        x_tensor = fluid.layers.data(
            name='x_tensor',
            shape=[self.x_tensor_dim],
            dtype='float32',
            lod_level=1)
        x_tensor.stop_gradient = False

        static_input_tensor = fluid.layers.data(
            name='static_input_tensor',
            shape=[self.static_input_tensor_dim],
            dtype='float32',
            lod_level=1)
        static_input_tensor.stop_gradient = False

        if only_forward:
            static_input_out_array = self._program.global_block().create_var(
                name='static_input_out_array',
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype='float32')
            static_input_out_array.stop_gradient = True

        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            step_x = rnn.step_input(x_tensor)
            step_static_input = rnn.static_input(static_input_tensor)
            if only_forward:
                fluid.layers.array_write(
                    x=step_static_input,
                    i=rnn.step_idx,
                    array=static_input_out_array)
            last = fluid.layers.sequence_pool(
                input=step_static_input, pool_type='last')
            projected = fluid.layers.fc(input=[step_x, last],
                                        size=self.output_dim)
            rnn.output(projected)

        if only_forward:
            static_input_step_outs = []
            step_idx = fluid.layers.fill_constant(
                shape=[1], dtype='int64', value=0)
            step_idx.stop_gradient = True

            for i in xrange(self._max_sequence_len):
                step_out = fluid.layers.array_read(static_input_out_array,
                                                   step_idx)
                step_out.stop_gradient = True
                static_input_step_outs.append(step_out)
                fluid.layers.increment(x=step_idx, value=1.0, in_place=True)

        if only_forward:
            return static_input_step_outs

        last = fluid.layers.sequence_pool(input=rnn(), pool_type='last')
        loss = fluid.layers.mean(x=last)
        append_backward(loss)
        static_input_grad = self._program.global_block().var(
            framework.grad_var_name('static_input_tensor'))
        return static_input_grad, loss

    def get_seq_len_from_lod(self, lod):
        return [lod[0][i + 1] - lod[0][i] for i in xrange(len(lod[0]) - 1)]

    def get_expected_static_step_outs(self):
        x_lod = self.x_tensor.lod()
        x_seq_len = self.get_seq_len_from_lod(x_lod)
        x_seq_len_sorted = sorted(x_seq_len)
        x_sorted_indices = np.argsort(x_seq_len)[::-1]

        static_lod = self.static_input_tensor.lod()
        static_sliced = [
            self.static_input_data[static_lod[0][i]:static_lod[0][i + 1]]
            for i in xrange(len(static_lod[0]) - 1)
        ]
        static_seq_len = self.get_seq_len_from_lod(static_lod)
        static_reordered = []
        for i in xrange(len(x_sorted_indices)):
            static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
        static_seq_len_reordered = [
            static_seq_len[x_sorted_indices[i]]
            for i in xrange(len(x_sorted_indices))
        ]

        static_step_outs = []

        for i in xrange(self._max_sequence_len):
            end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
            end = sum(static_seq_len_reordered[:end])
            static_step_outs.append(
                np.array(static_reordered[:end]).astype('float32'))

        return static_step_outs

    def test_step_out(self):
        static_step_outs = self.build_graph(only_forward=True)
        self.exe.run(framework.default_startup_program())
        expected_step_outs = self.get_expected_static_step_outs()
        for i in xrange(self._max_sequence_len):
            step_out = self.fetch_value(static_step_outs[i])
            self.assertTrue(np.allclose(step_out, expected_step_outs[i]))

    def test_network_gradient(self):
        pass  #still have bug (seed doesn't work)
        '''
        static_input_grad, loss = self.build_graph()
        self.exe.run(framework.default_startup_program())

        actual_gradients = self.fetch_value(static_input_grad)

        static_input_shape = self.static_input_tensor.get_dims()
        numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
        #print(actual_gradient)
        print(actual_gradients)
        # calculate numeric gradients
        tensor_size = np.product(static_input_shape)
        for i in xrange(tensor_size):
            origin = self.static_input_tensor.get_float_element(i)
            x_pos = origin + self._delta
            self.static_input_tensor.set_float_element(i, x_pos)
            y_pos = self.fetch_value(loss)[0]
            x_neg = origin - self._delta
            self.static_input_tensor.set_float_element(i, x_neg)
            y_neg = self.fetch_value(loss)[0]
            self.static_input_tensor.set_float_element(i, origin)
            numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2

        print(numeric_gradients)
        '''


if __name__ == '__main__':
    unittest.main()