test_learning_rate_scheduler.py 24.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import copy
18
import math
19
import numpy as np
20
import unittest
21

22
import paddle.fluid as fluid
23
import paddle.fluid.layers as layers
24
import paddle.fluid.framework as framework
Q
QI JUN 已提交
25
import paddle.fluid.core as core
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32


def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
Y
Yu Yang 已提交
33
    exponent = global_step / decay_steps
Q
Qiao Longfei 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * decay_rate**exponent


def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
    exponent = float(global_step) / float(decay_steps)
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * math.exp(-1 * decay_rate * exponent)


def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False):
    temp = float(global_step) / float(decay_steps)
    if staircase:
        temp = math.floor(temp)
    return learning_rate / (1 + decay_rate * temp)


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    if cycle:
        div = math.ceil(global_step / float(decay_steps))
        if div == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        global_step = min(global_step, decay_steps)
    return (learning_rate - end_learning_rate) * \
           ((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate


def piecewise_decay(global_step, boundaries, values):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if global_step < boundaries[i]:
            return values[i]
    return values[len(values) - 1]
Q
Qiao Longfei 已提交
84

85

S
shippingwang 已提交
86 87 88 89 90 91 92
def cosine_decay(global_step, learning_rate, step_each_epoch, epochs):
    cur_epoch = math.floor(global_step / step_each_epoch)
    decayed_lr = learning_rate * 0.5 * (
        math.cos(cur_epoch * math.pi / epochs) + 1)
    return decayed_lr


93 94 95 96 97 98 99 100
def noam_decay(global_step, d_model, warmup_steps, learning_rate=1.0):
    a = math.pow(global_step, -0.5)
    b = math.pow(warmup_steps, -1.5) * global_step
    decayed_lr = learning_rate * math.pow(d_model, -0.5) * min(a, b)

    return decayed_lr


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
    linear_step = end_lr - start_lr
    decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
    return decayed_lr


def multi_step_decay(global_step, learning_rate, milestones, decay_rate=0.1):
    for i in range(len(milestones)):
        if global_step < milestones[i]:
            return learning_rate * math.pow(decay_rate, i)

    return learning_rate * math.pow(decay_rate, len(milestones))


def step_decay(global_step, learning_rate, step_size, decay_rate=0.1):
    return learning_rate * math.pow(decay_rate, global_step // step_size)


119 120 121 122
def lambda_decay(global_step, learning_rate, lr_lambda):
    return learning_rate * lr_lambda(global_step)


123
class TestLearningRateDecayDygraph(unittest.TestCase):
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def test_LR_state_dict(self):
        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [3, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            Exponential_scheduler = fluid.dygraph.ExponentialDecay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True)
            Step_scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
            Reducelr_scheduler = fluid.dygraph.ReduceLROnPlateau(
                learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3)

            adam1 = fluid.optimizer.Adam(
                learning_rate=Exponential_scheduler,
                parameter_list=linear.parameters())
            adam2 = fluid.optimizer.Adam(
                learning_rate=Step_scheduler,
                parameter_list=linear.parameters())
            adam3 = fluid.optimizer.Adam(
                learning_rate=Reducelr_scheduler,
                parameter_list=linear.parameters())
            print(adam3.state_dict())

            for epoch in range(10):
                out = linear(input)
                loss = fluid.layers.reduce_mean(out)
                loss.backward()
                adam1.minimize(loss)
                adam2.minimize(loss)
                adam3.minimize(loss)
                linear.clear_gradients()

                Step_scheduler.epoch()
                Reducelr_scheduler.step(loss)

            fluid.dygraph.save_dygraph(linear.state_dict(), "save_path")

            Exponential_scheduler_test = fluid.dygraph.ExponentialDecay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True)
            Step_scheduler_test = fluid.dygraph.StepDecay(0.5, step_size=3)
            Reducelr_scheduler_test = fluid.dygraph.ReduceLROnPlateau(
                learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3)

            fluid.dygraph.save_dygraph(adam1.state_dict(), "save_path")
            _, opt_state = fluid.dygraph.load_dygraph("save_path")
            adam_test = fluid.optimizer.Adam(
                learning_rate=Exponential_scheduler_test,
                parameter_list=linear.parameters())
            adam_test.set_dict(opt_state)
            self.assertEqual(adam_test._learning_rate.step_num,
                             adam1._learning_rate.step_num,
                             "epoch_num is different before and after set_dict")

            fluid.dygraph.save_dygraph(adam2.state_dict(), "save_path")
            _, opt_state = fluid.dygraph.load_dygraph("save_path")
            adam_test = fluid.optimizer.Adam(
                learning_rate=Step_scheduler_test,
                parameter_list=linear.parameters())
            adam_test.set_dict(opt_state)
            self.assertEqual(adam_test._learning_rate.epoch_num,
                             adam2._learning_rate.epoch_num,
                             "epoch_num is different before and after set_dict")
            self.assertEqual(
                adam_test._learning_rate(),
                adam2._learning_rate(),
                "current learning rate is different before and after set_dict")

            fluid.dygraph.save_dygraph(adam3.state_dict(), "save_path")
            _, opt_state = fluid.dygraph.load_dygraph("save_path")
            adam_test = fluid.optimizer.Adam(
                learning_rate=Reducelr_scheduler_test,
                parameter_list=linear.parameters())
            adam_test.set_dict(opt_state)
            self.assertEqual(adam_test._learning_rate.best_loss,
                             adam3._learning_rate.best_loss.numpy()[0],
                             "best_loss is different before and after set_dict")
            self.assertEqual(
                adam_test._learning_rate.cooldown_counter,
                adam3._learning_rate.cooldown_counter,
                "cooldown_counter is different before and after set_dict")
            self.assertEqual(
                adam_test._learning_rate.num_bad_epochs,
                adam3._learning_rate.num_bad_epochs,
                "num_bad_epochs is different before and after set_dict")
            self.assertEqual(adam_test._learning_rate.epoch_num,
                             adam3._learning_rate.epoch_num,
                             "epoch is different before and after set_dict")
            self.assertEqual(
                adam_test._learning_rate(),
                adam3._learning_rate(),
                "current learning rate is different before and after set_dict")

222
    def test_NoamDecay(self):
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        with fluid.dygraph.guard():
            d_model = 0.01
            warmup_steps = 200
            learning_rate = 2.0
            lr = fluid.layers.noam_decay(d_model, warmup_steps, learning_rate)
            for step in range(5):
                step += 1
                right_result = noam_decay(step, d_model, warmup_steps,
                                          learning_rate)
                fluid_result = lr()

                self.assertAlmostEqual(
                    right_result,
                    fluid_result[0],
                    msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
                    format(step, right_result, fluid_result[0]))

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    def test_LinearLrWarmup(self):
        with fluid.dygraph.guard():
            lr = fluid.layers.polynomial_decay(
                learning_rate=1.0,
                decay_steps=10,
                end_learning_rate=0.0,
                power=1.0)
            lr = fluid.layers.linear_lr_warmup(
                learning_rate=lr, warmup_steps=2, start_lr=0.0, end_lr=1.0)

            right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
            for i in range(5):

                t = lr()

                self.assertTrue(
                    np.allclose((t.numpy())[0].item(), right_result[i]))

            with self.assertRaises(TypeError):
                lr = fluid.layers.linear_lr_warmup(
                    learning_rate="fake_lr",
                    warmup_steps=2,
                    start_lr=0.0,
                    end_lr=1.0)

    def test_MultiStepDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            milestones = [2, 4, 8]
            decay_rate = 0.2
270 271
            linear = fluid.dygraph.Linear(10, 10)

272 273
            scheduler = fluid.dygraph.MultiStepDecay(learning_rate, milestones,
                                                     decay_rate)
274 275 276

            adam = fluid.optimizer.AdamOptimizer(
                learning_rate=scheduler, parameter_list=linear.parameters())
277 278 279
            for epoch in range(10):
                right_result = multi_step_decay(epoch, learning_rate,
                                                milestones, decay_rate)
280
                fluid_result = adam.current_step_lr()
281 282 283 284
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
285
                    msg='Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
286 287 288 289 290 291 292 293 294 295 296 297 298 299
                    format(epoch, right_result, fluid_result))

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, [30, 50, 20],
                                                  0.1)

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, [20, 30, 50],
                                                  1)

            with self.assertRaises(TypeError):
                lr = fluid.dygraph.MultiStepDecay("test", [20, 30, 50])

            with self.assertRaises(ValueError):
300
                lr = fluid.dygraph.MultiStepDecay(-1, [20, 30, 50])
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    def test_StepDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            step_size = 3
            decay_rate = 0.2
            scheduler = fluid.dygraph.StepDecay(learning_rate, step_size,
                                                decay_rate)
            for epoch in range(10):
                right_result = step_decay(epoch, learning_rate, step_size,
                                          decay_rate)
                fluid_result = scheduler().numpy()[0]
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
317
                    msg='Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
318 319 320
                    format(epoch, right_result, fluid_result))

            with self.assertRaises(TypeError):
321
                lr = fluid.dygraph.StepDecay(learning_rate, "test", 0.1)
322 323

            with self.assertRaises(ValueError):
324
                lr = fluid.dygraph.StepDecay(learning_rate, 20, 2)
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    def test_LambdaDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            lr_lambda = lambda x: 0.95**x
            scheduler = fluid.dygraph.LambdaDecay(learning_rate, lr_lambda)

            linear = fluid.dygraph.nn.Linear(10, 10)
            adam = fluid.optimizer.Adam(
                scheduler, parameter_list=linear.parameters())

            for epoch in range(30):
                right_result = lambda_decay(epoch, learning_rate, lr_lambda)
                fluid_result = scheduler().numpy()[0]
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
                    msg='Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
                    format(epoch, right_result, fluid_result))

            with self.assertRaises(TypeError):
                lr = fluid.dygraph.LambdaDecay(learning_rate, "test")

349

350 351
class TestLearningRateDecay(unittest.TestCase):
    def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
Q
QI JUN 已提交
352 353 354 355 356 357 358 359 360
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.check_decay_with_place(place, python_decay_fn, fluid_decay_fn,
                                        kwargs)

    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
361 362
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
Q
QI JUN 已提交
363

364
        with fluid.program_guard(main_prog, startup_prog):
365
            decayed_lr = fluid_decay_fn(**kwargs)
Q
Qiao Longfei 已提交
366 367 368 369

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

370
        exe.run(startup_prog)
371

Q
Qiao Longfei 已提交
372
        for step in range(10):
373 374 375
            # Step of NoamDecay starts from 1.
            if python_decay_fn.__name__ == 'noam_decay':
                step += 1
376
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
Y
Yu Yang 已提交
377 378 379 380 381
            python_decayed_lr = python_decay_fn(
                global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
382
                msg='Failed lr scheduler is {0}, step {1}, Python result is {2}, Fluid result is {3}'.
Y
Yu Yang 已提交
383
                format(python_decay_fn.__name__,
384
                       str(step), str(python_decayed_lr), str(lr_val[0])))
Q
Qiao Longfei 已提交
385 386

    def test_decay(self):
387 388 389 390 391 392 393 394 395
        common_kwargs_true = {
            "learning_rate": 1.0,
            "decay_steps": 5,
            "decay_rate": 0.5,
            "staircase": True
        }
        common_kwargs_false = copy.deepcopy(common_kwargs_true)
        common_kwargs_false["staircase"] = False

Q
Qiao Longfei 已提交
396
        decay_fns = [
397 398 399 400 401 402
            (exponential_decay, layers.exponential_decay, common_kwargs_true),
            (exponential_decay, layers.exponential_decay, common_kwargs_false),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_true),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
            (inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
            (inverse_time_decay, layers.inverse_time_decay,
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
             common_kwargs_false), (polynomial_decay, layers.polynomial_decay, {
                 "learning_rate": 1.0,
                 "decay_steps": 5,
                 "cycle": True
             }), (polynomial_decay, layers.polynomial_decay, {
                 "learning_rate": 1.0,
                 "decay_steps": 5,
                 "cycle": False
             }), (piecewise_decay, layers.piecewise_decay, {
                 "boundaries": [3, 6, 9],
                 "values": [0.1, 0.2, 0.3, 0.4]
             }), (cosine_decay, layers.cosine_decay, {
                 "learning_rate": 0.1,
                 "step_each_epoch": 100,
                 "epochs": 120
             }), (noam_decay, layers.noam_decay, {
                 "d_model": 0.01,
                 "warmup_steps": 200,
                 "learning_rate": 2.0
             })
Q
Qiao Longfei 已提交
423 424
        ]

425
        for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
426
            print("class=" + self.__class__.__name__ + " decay_fn=" +
427
                  py_decay_fn.__name__ + " kwargs=" + str(kwargs))
Q
Qiao Longfei 已提交
428 429 430
            main_program = framework.Program()
            startup_program = framework.Program()
            with framework.program_guard(main_program, startup_program):
431
                self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
Q
Qiao Longfei 已提交
432 433


434
class TestLinearWamrupLearningRateDecay(unittest.TestCase):
435 436 437 438 439 440
    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10
Q
qingqing01 已提交
441
        start_lr = 0.1 / 3.
442 443 444 445 446 447 448 449 450 451 452
        end_lr = 0.1

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(
                fluid_decay_fn(**kwargs), warmup_steps, start_lr, end_lr)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
453 454 455
            # Step of NoamDecay starts from 1.
            if fluid_decay_fn.__name__ == 'noam_decay':
                step += 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
                python_decayed_lr = linear_lr_warmup(
                    float(step), warmup_steps, start_lr, end_lr)
            else:
                python_decayed_lr = python_decay_fn(
                    global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
                msg='Test {0} Failed, step {1}, Python result is {2}, Fluid result is {3}'.
                format(python_decay_fn.__name__,
                       str(step), str(python_decayed_lr), str(lr_val[0])))


Q
qingqing01 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class TestLinearWamrupLearningRateDecayWithScalarInput(unittest.TestCase):
    def run_scalar_lr(self, place, lr, start_lr, end_lr):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(lr, warmup_steps, start_lr,
                                                 end_lr)

        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
                expected_lr = linear_lr_warmup(
                    float(step), warmup_steps, start_lr, end_lr)
            else:
                expected_lr = lr
            self.assertAlmostEqual(
                expected_lr,
                lr_val[0],
                msg='Test failed, step {0}, expected {1}, but got {2}'.format(
                    step, expected_lr, lr_val[0]))

    def test_scalar_lr(self):
        def run_places(lr, start_lr, end_lr):
            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for p in places:
                self.run_scalar_lr(p, lr, start_lr, end_lr)

        # float
        lr = 0.2
        start_lr = 0.1 / 3.
        end_lr = 0.2
        run_places(lr, start_lr, end_lr)

        # int end_lr
        lr = 2.
        start_lr = 0.1 / 3.
        end_lr = 1
        run_places(lr, start_lr, end_lr)

        # int
        lr = 1
        start_lr = 0
        end_lr = 1
        run_places(lr, start_lr, end_lr)


525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
def reduce_lr_on_plateau(decay_rate, threshold, cooldown, patience, m, n, loss,
                         var_list):
    def is_better(current, best, m, n):
        if m == 'min' and n == 'rel':
            return current < best - best * threshold
        elif m == 'min' and n == 'abs':
            return current < best - threshold
        elif m == 'max' and n == 'rel':
            return current > best + best * threshold
        else:  # mode == 'max' and epsilon_mode == 'abs':
            return current > best + threshold

    if var_list[2] > 0:
        var_list[2] -= 1
        return var_list[1]

    if is_better(loss, var_list[0], m, n):
        var_list[0] = loss
        var_list[3] = 0
    else:
        var_list[3] += 1
        if var_list[3] > patience:
            var_list[2] = cooldown
            var_list[3] = 0
            new_lr = var_list[1] * decay_rate
            var_list[1] = new_lr if var_list[1] - new_lr > 1e-8 else var_list[1]

    return var_list[1]


class TestReduceLROnPlateauDecay(unittest.TestCase):
    def test_dygraph_mode(self):
        with fluid.dygraph.guard():
            # the decay rate must be less than 1.0
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(
                    learning_rate=1.0, decay_rate=2.0)
            # the mode must be "min" or "max"
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(learning_rate=1.0, mode="test")
            # the threshold_mode must be "rel" or "abs"
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(
                    learning_rate=1.0, threshold_mode="test")

            base_lr = 1.0
            patience = 3
            cooldown = 1
            decay_rate = 0.5
            threshold = 1e-4
            linear = fluid.dygraph.Linear(10, 10)

            for m, n in zip(['min', 'max', 'min', 'max'],
                            ['rel', 'rel', 'abs', 'abs']):
                kwargs = {
                    'learning_rate': base_lr,
                    'decay_rate': decay_rate,
                    'threshold': threshold,
                    'verbose': True,
                    'patience': patience,
                    'cooldown': cooldown,
                    'mode': m,
                    'threshold_mode': n,
                    'eps': 1e-6
                }
                print("class=" + fluid.dygraph.ReduceLROnPlateau.__name__ +
                      " kwargs=" + str(kwargs))
                lr = fluid.dygraph.ReduceLROnPlateau(**kwargs)
                sgd = fluid.optimizer.SGD(learning_rate=lr,
                                          parameter_list=linear.parameters())

                best = float("-10000") if m == "max" else float("10000")
                expected_lr = 1.0
                cooldown_counter = 0
                num_bad_epochs = 0
                var_list = [best, expected_lr, cooldown_counter, num_bad_epochs]
                step_num = 0
                epoch_num = 0
                for epoch in range(30):
                    total_loss = 0

                    for batch_id in range(2):
                        step_num += 1
                        x = fluid.dygraph.to_variable(
                            np.array([step_num]).astype('float32'))
                        loss = layers.sin(x)
                        sgd.minimize(loss)
                        total_loss += loss

                    epoch_num += 1
                    # get expected lr from fluid
                    avg_loss = total_loss / 1
                    lr.step(avg_loss)
                    actual_lr = lr().numpy()[0]

                    # get expected lr form python
                    expected_lr = reduce_lr_on_plateau(decay_rate, threshold,
                                                       cooldown, patience, m, n,
                                                       avg_loss, var_list)
                    self.assertEqual(
                        expected_lr,
                        actual_lr,
                        msg='Failed reduce lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
                        format(epoch_num, expected_lr, actual_lr))


Q
Qiao Longfei 已提交
631 632
if __name__ == '__main__':
    unittest.main()