pool_compute.cc 2.3 KB
Newer Older
Z
ZhenWang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/operators/op_params.h"
// NOTE ugly here, hide these.
#include "paddle/fluid/lite/opencl/cl_caller.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class PoolCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::PoolParam;

  void Run() override {
Z
Zhen Wang 已提交
33 34 35
    const auto& param = *param_.get_mutable<param_t>();
    const auto& in_dims = param.x->dims();
    const auto& out_dims = param.output->dims();
Z
ZhenWang 已提交
36
    const std::string pooling_type = param.pooling_type;
Z
Zhen Wang 已提交
37 38 39 40
    const bool global_pooling = param.global_pooling;
    std::vector<int> paddings = param.paddings;
    std::vector<int> strides = param.strides;
    std::vector<int> ksize = param.ksize;
Z
ZhenWang 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    if (global_pooling) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_dims[i + 2]);
      }
    }

    auto& context = ctx_->As<OpenClContext>();
    CHECK(context.cl_helper() != nullptr);

    pool(context.cl_helper(), pooling_type, paddings[0], paddings[1],
         strides[0], strides[1], ksize[0], ksize[1],
         static_cast<const float*>(param.x->raw_data()), in_dims,
         param.output->mutable_data<float>(), out_dims);
  }
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(pool2d, kOpenCL, kFloat, kNCHW,
                     paddle::lite::kernels::opencl::PoolCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
    .Finalize();