test_inference_model_io.py 7.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17 18
import unittest

19
import os
M
minqiyang 已提交
20
import six
D
dzhwinter 已提交
21
import numpy as np
22
import paddle.fluid.core as core
23 24
import paddle.fluid as fluid
import warnings
25

C
Chen Weihang 已提交
26
import paddle
27 28 29
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
30
from paddle.fluid.compiler import CompiledProgram
31
from paddle.fluid.framework import Program, program_guard
32
from paddle.fluid.io import save_inference_model, load_inference_model, save_persistables
D
dzhwinter 已提交
33
from paddle.fluid.transpiler import memory_optimize
34 35 36


class TestBook(unittest.TestCase):
37 38 39 40 41 42
    class InferModel(object):
        def __init__(self, list):
            self.program = list[0]
            self.feed_var_names = list[1]
            self.fetch_vars = list[2]

43 44
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"
45
        UNI_MODEL_DIR = "./tmp/inference_model1"
46 47 48

        init_program = Program()
        program = Program()
49 50 51 52 53 54 55 56

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
57
            avg_cost = layers.mean(cost)
58 59 60

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
61 62 63 64 65 66

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

M
minqiyang 已提交
67
        for i in six.moves.xrange(100):
D
dzhwinter 已提交
68
            tensor_x = np.array(
69
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
70
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
71 72 73 74 75 76

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

77
        # Separated model and unified model
78
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
79 80 81 82 83 84
        save_inference_model(UNI_MODEL_DIR, ["x", "y"], [avg_cost], exe,
                             program, 'model', 'params')
        main_program = program.clone()._prune_with_input(
            feeded_var_names=["x", "y"], targets=[avg_cost])
        params_str = save_persistables(exe, None, main_program, None)

D
dzhwinter 已提交
85 86 87 88
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
89

M
minqiyang 已提交
90
        six.moves.reload_module(executor)  # reload to build a new scope
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        model_0 = self.InferModel(load_inference_model(MODEL_DIR, exe))
        with open(os.path.join(UNI_MODEL_DIR, 'model'), "rb") as f:
            model_str = f.read()
        model_1 = self.InferModel(
            load_inference_model(None, exe, model_str, params_str))

        for model in [model_0, model_1]:
            outs = exe.run(model.program,
                           feed={
                               model.feed_var_names[0]: tensor_x,
                               model.feed_var_names[1]: tensor_y
                           },
                           fetch_list=model.fetch_vars)
            actual = outs[0]

            self.assertEqual(model.feed_var_names, ["x", "y"])
            self.assertEqual(len(model.fetch_vars), 1)
            print("fetch %s" % str(model.fetch_vars[0]))
            self.assertEqual(expected, actual)

        self.assertRaises(ValueError, fluid.io.load_inference_model, None, exe,
                          model_str, None)
114 115


D
dzhwinter 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model2"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
136
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
137

138 139 140 141 142 143 144 145
    def test_save_inference_model_with_auc(self):
        MODEL_DIR = "./tmp/inference_model4"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
146
            y = layers.data(name='y', shape=[1], dtype='int32')
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            predict = fluid.layers.fc(input=x, size=2, act='softmax')
            acc = fluid.layers.accuracy(input=predict, label=y)
            auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                                  label=y)
            cost = fluid.layers.cross_entropy(input=predict, label=y)
            avg_cost = fluid.layers.mean(x=cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe,
                                 program)
            expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
            self.assertTrue(len(w) > 0)
            self.assertTrue(expected_warn == str(w[0].message))

D
dzhwinter 已提交
165

T
tangwei12 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
class TestInstance(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model3"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
            loss_name=avg_cost.name)

C
chengduo 已提交
191
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog)
T
tangwei12 已提交
192 193 194 195
        self.assertRaises(TypeError, save_inference_model,
                          [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog])


196 197 198 199 200 201 202 203
class TestLoadInferenceModelError(unittest.TestCase):
    def test_load_model_not_exist(self):
        place = core.CPUPlace()
        exe = executor.Executor(place)
        self.assertRaises(ValueError, load_inference_model,
                          './test_not_exist_dir', exe)


204
if __name__ == '__main__':
C
Chen Weihang 已提交
205
    paddle.enable_static()
206
    unittest.main()